Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

Nuclear Receptors

Series edited by Mitchell A. Lazar

Nuclear receptors are a class of intracellular proteins that sense and respond to a variety of endogenous hormones, vitamins, and xenobiotic endocrine disruptors by modulating gene expression. These proteins have well-established roles in the regulation of energy balance and the skeletal system, and they are emerging as important players in other areas of human physiology and disease. Humans have 48 nuclear receptors that all possess an N-terminal transactivation domain, a highly conserved central region DNA-binding domain, and a C-terminal ligand-binding domain. Ligand binding results in the transactivation of specific genes within a given tissue. Notably, a number of nuclear receptors do not have a known endogenous ligand and structural studies indicate that they may not bind ligands at all, but instead recruit other nuclear receptors or chromatin modifiers to control gene expression. Nuclear receptor activity can be modulated through interactions with other nuclear receptors or transcriptional coactivator or corepressor proteins, as well as through modulation by numerous growth factor and cytokine signaling cascades that induce various posttranslational modifications. Reviews in this series examine the role of nuclear receptors in metabolic syndrome, cardiovascular disease, liver function, hormone-dependent cancers, responses to common therapeutic agents, genetic disorders, the effects of vitamin D, and parasitic disease.

Articles in series

Maturing of the nuclear receptor family
Mitchell A. Lazar
Mitchell A. Lazar
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1123-1125. https://doi.org/10.1172/JCI92949.
View: Text | PDF

Maturing of the nuclear receptor family

  • Text
  • PDF
Abstract

Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

Authors

Mitchell A. Lazar

×

Role of steroid receptor and coregulator mutations in hormone-dependent cancers
Anna C. Groner, Myles Brown
Anna C. Groner, Myles Brown
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1126-1135. https://doi.org/10.1172/JCI88885.
View: Text | PDF

Role of steroid receptor and coregulator mutations in hormone-dependent cancers

  • Text
  • PDF
Abstract

Steroid hormones mediate critical lineage-specific developmental and physiologic responses. They function by binding their cognate receptors, which are transcription factors that drive specific gene expression programs. The requirement of most prostate cancers for androgen and most breast cancers for estrogen has led to the development of endocrine therapies that block the action of these hormones in these tumors. While initial endocrine interventions are successful, resistance to therapy often arises. We will review how steroid receptor–dependent genomic signaling is affected by genetic alterations in endocrine therapy resistance. The detailed understanding of these interactions will not only provide improved treatment options to overcome resistance, but, in the future, will also be the basis for implementing precision cancer medicine approaches.

Authors

Anna C. Groner, Myles Brown

×

Glucocorticoid receptors: finding the middle ground
Sofie J. Desmet, Karolien De Bosscher
Sofie J. Desmet, Karolien De Bosscher
Published March 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1136-1145. https://doi.org/10.1172/JCI88886.
View: Text | PDF

Glucocorticoid receptors: finding the middle ground

  • Text
  • PDF
Abstract

Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.

Authors

Sofie J. Desmet, Karolien De Bosscher

×

The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights
J. Wesley Pike, … , Melda Onal, Nancy A. Benkusky
J. Wesley Pike, … , Melda Onal, Nancy A. Benkusky
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1146-1154. https://doi.org/10.1172/JCI88887.
View: Text | PDF

The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights

  • Text
  • PDF
Abstract

The vitamin D receptor (VDR) is the single known regulatory mediator of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in higher vertebrates. It acts in the nucleus of vitamin D target cells to regulate the expression of genes whose products control diverse, cell type–specific biological functions that include mineral homeostasis. In this Review we describe progress that has been made in defining new cellular sites of action of this receptor, the mechanisms through which this mediator controls the expression of genes, the biology that ensues, and the translational impact of this receptor on human health and disease. We conclude with a brief discussion of what comes next in understanding vitamin D biology and the mechanisms that underlie its actions.

Authors

J. Wesley Pike, Mark B. Meyer, Seong-Min Lee, Melda Onal, Nancy A. Benkusky

×

Cardiac nuclear receptors: architects of mitochondrial structure and function
Rick B. Vega, Daniel P. Kelly
Rick B. Vega, Daniel P. Kelly
Published February 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1155-1164. https://doi.org/10.1172/JCI88888.
View: Text | PDF

Cardiac nuclear receptors: architects of mitochondrial structure and function

  • Text
  • PDF
Abstract

The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.

Authors

Rick B. Vega, Daniel P. Kelly

×

Nuclear receptors: emerging drug targets for parasitic diseases
Zhu Wang, … , Steven A. Kliewer, David J. Mangelsdorf
Zhu Wang, … , Steven A. Kliewer, David J. Mangelsdorf
Published February 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1165-1171. https://doi.org/10.1172/JCI88890.
View: Text | PDF

Nuclear receptors: emerging drug targets for parasitic diseases

  • Text
  • PDF
Abstract

Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.

Authors

Zhu Wang, Nathaniel E. Schaffer, Steven A. Kliewer, David J. Mangelsdorf

×

Brain nuclear receptors and body weight regulation
Yong Xu, … , Bert W. O’Malley, Joel K. Elmquist
Yong Xu, … , Bert W. O’Malley, Joel K. Elmquist
Published February 20, 2017
Citation Information: J Clin Invest. 2017;127(4):1172-1180. https://doi.org/10.1172/JCI88891.
View: Text | PDF

Brain nuclear receptors and body weight regulation

  • Text
  • PDF
Abstract

Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects.

Authors

Yong Xu, Bert W. O’Malley, Joel K. Elmquist

×

Genetic disorders of nuclear receptors
John C. Achermann, … , Louise Fairall, Krishna Chatterjee
John C. Achermann, … , Louise Fairall, Krishna Chatterjee
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1181-1192. https://doi.org/10.1172/JCI88892.
View: Text | PDF

Genetic disorders of nuclear receptors

  • Text
  • PDF
Abstract

Following the first isolation of nuclear receptor (NR) genes, genetic disorders caused by NR gene mutations were initially discovered by a candidate gene approach based on their known roles in endocrine pathways and physiologic processes. Subsequently, the identification of disorders has been informed by phenotypes associated with gene disruption in animal models or by genetic linkage studies. More recently, whole exome sequencing has associated pathogenic genetic variants with unexpected, often multisystem, human phenotypes. To date, defects in 20 of 48 human NR genes have been associated with human disorders, with different mutations mediating phenotypes of varying severity or several distinct conditions being associated with different changes in the same gene. Studies of individuals with deleterious genetic variants can elucidate novel roles of human NRs, validating them as targets for drug development or providing new insights into structure-function relationships. Importantly, human genetic discoveries enable definitive disease diagnosis and can provide opportunities to therapeutically manage affected individuals. Here we review germline changes in human NR genes associated with “monogenic” conditions, including a discussion of the structural basis of mutations that cause distinctive changes in NR function and the molecular mechanisms mediating pathogenesis.

Authors

John C. Achermann, John Schwabe, Louise Fairall, Krishna Chatterjee

×

Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1193-1201. https://doi.org/10.1172/JCI88893.
View: Text | PDF

Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance

  • Text
  • PDF
Abstract

The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

Authors

Geoffrey A. Preidis, Kang Ho Kim, David D. Moore

×

Distinct but complementary contributions of PPAR isotypes to energy homeostasis
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1202-1214. https://doi.org/10.1172/JCI88894.
View: Text | PDF

Distinct but complementary contributions of PPAR isotypes to energy homeostasis

  • Text
  • PDF
Abstract

Peroxisome proliferator–activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.

Authors

Vanessa Dubois, Jérôme Eeckhoute, Philippe Lefebvre, Bart Staels

×

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts