Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

Tumor Microenvironment

Series edited by Andrew J. Ewald

Cancer cells in a solid tumor are supported by vasculature, extracellular matrix, nerves, and an immunological milieu collectively known as the tumor microenvironment. Elements within the tumor microenvironment can act in a coordinated fashion to support tumor growth, immune evasion, and metastasis. In this series, reviews curated by Series Editor Andrew Ewald highlight the tumor microenvironment’s complex effects in cancer, describing its modulation of immune cells and the tumor stroma as well as its role in disseminating metastases.

Articles in series

Neutrophil dynamics in the tumor microenvironment
Amanda J. McFarlane, … , Seth B. Coffelt, Leo M. Carlin
Amanda J. McFarlane, … , Seth B. Coffelt, Leo M. Carlin
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143759. https://doi.org/10.1172/JCI143759.
View: Text | PDF

Neutrophil dynamics in the tumor microenvironment

  • Text
  • PDF
Abstract

The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.

Authors

Amanda J. McFarlane, Frédéric Fercoq, Seth B. Coffelt, Leo M. Carlin

×

The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression
Asurayya Worrede, … , Stephen M. Douglass, Ashani T. Weeraratna
Asurayya Worrede, … , Stephen M. Douglass, Ashani T. Weeraratna
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143763. https://doi.org/10.1172/JCI143763.
View: Text | PDF

The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression

  • Text
  • PDF
Abstract

Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth’s surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as “photoaging.” We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.

Authors

Asurayya Worrede, Stephen M. Douglass, Ashani T. Weeraratna

×

Exploiting bone niches: progression of disseminated tumor cells to metastasis
Aaron M. Muscarella, … , Sarah M. Waldvogel, Xiang H.-F. Zhang
Aaron M. Muscarella, … , Sarah M. Waldvogel, Xiang H.-F. Zhang
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143764. https://doi.org/10.1172/JCI143764.
View: Text | PDF

Exploiting bone niches: progression of disseminated tumor cells to metastasis

  • Text
  • PDF
Abstract

Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.

Authors

Aaron M. Muscarella, Sergio Aguirre, Xiaoxin Hao, Sarah M. Waldvogel, Xiang H.-F. Zhang

×

Leveraging microenvironmental synthetic lethalities to treat cancer
Kevin J. Metcalf, … , Zena Werb, Valerie M. Weaver
Kevin J. Metcalf, … , Zena Werb, Valerie M. Weaver
Published March 15, 2021
Citation Information: J Clin Invest. 2021;131(6):e143765. https://doi.org/10.1172/JCI143765.
View: Text | PDF

Leveraging microenvironmental synthetic lethalities to treat cancer

  • Text
  • PDF
Abstract

Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell–specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.

Authors

Kevin J. Metcalf, Alaa Alazzeh, Zena Werb, Valerie M. Weaver

×

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts