Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

New feature: First Author Perspectives

Our new feature, “First Author Perspectives,” provides insight into the research process underlying a recently published manuscript.

  • Gaetano Santulli discusses “A selective microRNA-based strategy inhibits restenosis while preserving endothelial function.”
  • Zhongyi Chen and Lilu Guo discuss their JCI article, “Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.”
  • Jaime Anastas talks about her JCI article, “WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors.”

Published July 14, 2014, by Corinne Williams

Related articles

WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors
Jamie N. Anastas, … , Andy J. Chien, Randall T. Moon
Jamie N. Anastas, … , Andy J. Chien, Randall T. Moon
Published May 27, 2014
Citation Information: J Clin Invest. 2014;124(7):2877-2890. https://doi.org/10.1172/JCI70156.
View: Text | PDF
Research Article Oncology

WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

  • Text
  • PDF
Abstract

About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance.

Authors

Jamie N. Anastas, Rima M. Kulikauskas, Tigist Tamir, Helen Rizos, Georgina V. Long, Erika M. von Euw, Pei-Tzu Yang, Hsiao-Wang Chen, Lauren Haydu, Rachel A. Toroni, Olivia M. Lucero, Andy J. Chien, Randall T. Moon

×

Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity
Zhongyi Chen, … , Kevin D. Niswender, Sean S. Davies
Zhongyi Chen, … , Kevin D. Niswender, Sean S. Davies
Published June 24, 2014
Citation Information: J Clin Invest. 2014;124(8):3391-3406. https://doi.org/10.1172/JCI72517.
View: Text | PDF
Technical Advance Metabolism

Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity

  • Text
  • PDF
Abstract

Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person’s microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

Authors

Zhongyi Chen, Lilu Guo, Yongqin Zhang, Rosemary L. Walzem, Julie S. Pendergast, Richard L. Printz, Lindsey C. Morris, Elena Matafonova, Xavier Stien, Li Kang, Denis Coulon, Owen P. McGuinness, Kevin D. Niswender, Sean S. Davies

×

A selective microRNA-based strategy inhibits restenosis while preserving endothelial function
Gaetano Santulli, … , Andrew R. Marks, Hana Totary-Jain
Gaetano Santulli, … , Andrew R. Marks, Hana Totary-Jain
Published August 18, 2014
Citation Information: J Clin Invest. 2014;124(9):4102-4114. https://doi.org/10.1172/JCI76069.
View: Text | PDF
Research Article

A selective microRNA-based strategy inhibits restenosis while preserving endothelial function

  • Text
  • PDF
Abstract

Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27Kip1 (p27) with target sequences for EC-specific miR-126-3p at the 3′ end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS–treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.

Authors

Gaetano Santulli, Anetta Wronska, Kunihiro Uryu, Thomas G. Diacovo, Melanie Gao, Steven O. Marx, Jan Kitajewski, Jamie M. Chilton, Kemal Marc Akat, Thomas Tuschl, Andrew R. Marks, Hana Totary-Jain

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts