Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Maria A. Stacey, … , Paul Kellam, Ian R. Humphreys
Published February 27, 2017
Citation Information: J Clin Invest. 2017;127(4):1463-1474. https://doi.org/10.1172/JCI84889.
View: Text | PDF
Research Article Immunology Virology

The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis

  • Text
  • PDF
Abstract

The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3–/– mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3–/– mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.

Authors

Maria A. Stacey, Simon Clare, Mathew Clement, Morgan Marsden, Juneid Abdul-Karim, Leanne Kane, Katherine Harcourt, Cordelia Brandt, Ceri A. Fielding, Sarah E. Smith, Rachael S. Wash, Silvia Gimeno Brias, Gabrielle Stack, George Notley, Emma L. Cambridge, Christopher Isherwood, Anneliese O. Speak, Zoë Johnson, Walter Ferlin, Simon A. Jones, Paul Kellam, Ian R. Humphreys

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts