Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics
Leo Kager, … , Mary V. Relling, William E. Evans
Leo Kager, … , Mary V. Relling, William E. Evans
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):110-117. https://doi.org/10.1172/JCI22477.
View: Text | PDF | Erratum
Article Oncology

Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics

  • Text
  • PDF
Abstract

The ability of leukemia cells to accumulate methotrexate polyglutamate (MTXPG) is an important determinant of the antileukemic effects of methotrexate (MTX). We measured in vivo MTXPG accumulation in leukemia cells from 101 children with acute lymphoblastic leukemia (ALL) and established that B-lineage ALL with either TEL-AML1 or E2A-PBX1 gene fusion, or T-lineage ALL, accumulates significantly lower MTXPG compared with B-lineage ALL without these genetic abnormalities or compared with hyperdiploid (fewer than 50 chromosomes) ALL. To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays to analyze expression of 32 folate pathway genes in diagnostic leukemia cells from 197 children. This revealed ALL subtype–specific patterns of folate pathway gene expression that were significantly related to MTXPG accumulation. We found significantly lower expression of the reduced folate carrier (SLC19A1, an MTX uptake transporter) in E2A-PBX1 ALL, significantly higher expression of breast cancer resistance protein (ABCG2, an MTX efflux transporter) in TEL-AML1 ALL, and lower expression of FPGS (which catalyzes formation of MTXPG) in T-lineage ALL, consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome these potential causes of treatment failure in childhood ALL.

Authors

Leo Kager, Meyling Cheok, Wenjian Yang, Gianluigi Zaza, Qing Cheng, John C. Panetta, Ching-Hon Pui, James R. Downing, Mary V. Relling, William E. Evans

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts