Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics
Leo Kager, … , Mary V. Relling, William E. Evans
Leo Kager, … , Mary V. Relling, William E. Evans
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):110-117. https://doi.org/10.1172/JCI22477.
View: Text | PDF | Erratum
Article Oncology

Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics

  • Text
  • PDF
Abstract

The ability of leukemia cells to accumulate methotrexate polyglutamate (MTXPG) is an important determinant of the antileukemic effects of methotrexate (MTX). We measured in vivo MTXPG accumulation in leukemia cells from 101 children with acute lymphoblastic leukemia (ALL) and established that B-lineage ALL with either TEL-AML1 or E2A-PBX1 gene fusion, or T-lineage ALL, accumulates significantly lower MTXPG compared with B-lineage ALL without these genetic abnormalities or compared with hyperdiploid (fewer than 50 chromosomes) ALL. To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays to analyze expression of 32 folate pathway genes in diagnostic leukemia cells from 197 children. This revealed ALL subtype–specific patterns of folate pathway gene expression that were significantly related to MTXPG accumulation. We found significantly lower expression of the reduced folate carrier (SLC19A1, an MTX uptake transporter) in E2A-PBX1 ALL, significantly higher expression of breast cancer resistance protein (ABCG2, an MTX efflux transporter) in TEL-AML1 ALL, and lower expression of FPGS (which catalyzes formation of MTXPG) in T-lineage ALL, consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome these potential causes of treatment failure in childhood ALL.

Authors

Leo Kager, Meyling Cheok, Wenjian Yang, Gianluigi Zaza, Qing Cheng, John C. Panetta, Ching-Hon Pui, James R. Downing, Mary V. Relling, William E. Evans

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Box plot of intracellular concentration of total methotrexate polyglutam...
Box plot of intracellular concentration of total methotrexate polyglutamates (MTXPG2–7) according to ALL subtypes, following in vivo treatment with 1 g/m2 MTX infused over 24 hours. MTXPG accumulation (picomoles per 109 bone marrow ALL cells) is shown for hyperdiploid B-lineage ALL (BHD, n = 19), nonhyperdiploid B-lineage ALL without defined molecular genetic abnormalities (BNHD, n = 39), ALL with E2A-PBX1 fusion (E2A-PBX1, n = 5), T-ALL (n = 14), and ALL with TEL-AML1 fusion (TEL-AML1, n = 24). Medians, quartiles, and ranges excluding outliers (circles) are depicted. P values are from pairwise comparisons using the Wilcoxon rank sum test after adjustment for multiple testing.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts