SLFN14-related thrombocytopenia is a rare bleeding disorder caused by SLFN14 mutations altering hemostasis in patients with platelet dysfunction. Schlafen (SLFN) proteins are highly conserved in mammals where SLFN14 is specifically expressed in megakaryocyte (MK) and erythroblast lineages. The role of SLFN14 in megakaryopoiesis and platelet function has not been elucidated. We generated a new murine model with a platelet- and MK-specific SLFN14 deletion using platelet factor-4 (PF4) cre-mediated deletion of exons 2 and 3 in Slfn14 (Slfn14;PF4-Cre) to decipher the molecular mechanisms driving the bleeding phenotype. SLFN14;PF4-Cre+ platelets displayed reduced platelet signaling to thrombin, reduced thrombin formation, increased bleeding tendency, and delayed thrombus formation as assessed by intravital imaging. Moreover, fewer in situ bone marrow MKs compared to controls. RNA sequencing and gene ontology analysis of MKs and platelets from Slfn14;PF4-Cre homozygous mice revealed altered pathways of ubiquitination, ATP activity, cytoskeleton and molecular function. In summary, we investigated how SLFN14 deletion in MKs and platelets leads to platelet dysfunction and alters their transcriptome, explaining the platelet dysfunction and bleeding in humans and mice with SLFN14 mutations.
Rachel J. Stapley, Xenia Sawkulycz, Gabriel H.M. Da Mota Araujo, Maximilian Englert, Lourdes Garcia-Quintanilla, Sophie R.M. Smith, Amna Ahmed, Elizabeth J. Haining, Nayandeep Kaur, Andrea Bacon, Andrey V. Pisarev, Natalie S. Poulter, Dean P.J. Kavanagh, Steven G. Thomas, Samantha J. Montague, Julie Rayes, Zoltan Nagy, Neil V. Morgan
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.