Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119528

Oxidized or acetylated low density lipoproteins are rapidly cleared by the liver in mice with disruption of the scavenger receptor class A type I/II gene.

W Ling, M Lougheed, H Suzuki, A Buchan, T Kodama, and U P Steinbrecher

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Ling, W. in: PubMed | Google Scholar

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Lougheed, M. in: PubMed | Google Scholar

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Suzuki, H. in: PubMed | Google Scholar

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Buchan, A. in: PubMed | Google Scholar

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Kodama, T. in: PubMed | Google Scholar

Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.

Find articles by Steinbrecher, U. in: PubMed | Google Scholar

Published July 15, 1997 - More info

Published in Volume 100, Issue 2 on July 15, 1997
J Clin Invest. 1997;100(2):244–252. https://doi.org/10.1172/JCI119528.
© 1997 The American Society for Clinical Investigation
Published July 15, 1997 - Version history
View PDF
Abstract

Oxidized low density lipoprotein (LDL) and acetyl LDL are recognized by the scavenger receptor class A type I/II (SR-AI/II) on macrophages and liver endothelial cells. Several investigators have suggested that there are additional receptors specific for oxidized LDL, but characterization of these alternate receptors for oxidized LDL and evaluation of their quantitative importance in uptake of oxidized LDL has been difficult because of overlapping ligand specificity with SR-AI/II. The purpose of this study was to determine the importance of SR-AI/II in the removal of modified LDL from the bloodstream in vivo. The clearance rate of oxidized LDL from plasma in normal mice was very rapid, and > 90% of injected dose was removed from the blood within 5 min. Clearance rates of oxidized LDL were equally high in SR-AI/II knockout mice, indicating that this receptor is not required for removal of oxidized LDL from plasma. Surprisingly, there was no difference in the clearance rate of acetyl LDL in wild-type and SR-AI/II knockout animals. The plasma clearance of radioiodinated acetyl LDL was almost fully blocked by a 50-fold excess of unlabeled acetyl LDL, but the latter only inhibited oxidized LDL clearance by approximately 5%. Both modified LDLs were cleared mostly by the liver, and there was no difference in the tissue distribution of modified LDL in control and knockout mice. Studies in isolated nonparenchymal liver cells showed that Kupffer cells accounted for most of the uptake of oxidized LDL. Extensively oxidized LDL and LDL modified by exposure to fatty acid peroxidation products were efficient competitors for the uptake of labeled oxidized LDL by SR-AI/II-deficient Kupffer cells, while acetyl LDL and malondialdehyde-modified LDL were relatively poor competitors.

Version history
  • Version 1 (July 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts