Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,344 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 134
  • 135
  • Next →
HIF-1 promotes murine breast cancer brain metastasis by increasing production of integrin β3–containing extracellular vesicles
Yongkang Yang, … , Kathleen L. Gabrielson, Gregg L. Semenza
Yongkang Yang, … , Kathleen L. Gabrielson, Gregg L. Semenza
Published July 15, 2025
Citation Information: J Clin Invest. 2025;135(14):e190470. https://doi.org/10.1172/JCI190470.
View: Text | PDF

HIF-1 promotes murine breast cancer brain metastasis by increasing production of integrin β3–containing extracellular vesicles

  • Text
  • PDF
Abstract

Brain metastasis is a major cause of breast cancer (BC) mortality, but the cellular and molecular mechanisms have not been fully elucidated. BC cells must breach the blood-brain barrier in order to colonize the brain. Here, we determined that integrin β3 (ITGB3) expression mediated by hypoxia-inducible factor 1 (HIF-1) plays a critical role in metastasis of BC cells to the brain. Hypoxia stimulated BC cell migration and invasion ex vivo and brain colonization in vivo. Knockdown of either HIF-1α or ITGB3 expression impaired brain colonization by human or mouse BC cells injected into the cardiac left ventricle. Exposure of BC cells to hypoxia increased expression of ITGB3 and its incorporation into small extracellular vesicles (EVs). EVs harvested from the conditioned medium of hypoxic BC cells showed increased retention in the brain after intracardiac injection that was HIF-1α and ITGB3 dependent. EVs from hypoxic BC cells showed binding to brain endothelial cells (ECs), leading to increased EC–BC cell interaction, increased vascular endothelial growth factor receptor 2 signaling, increased EC permeability, and increased transendothelial migration of BC cells. Taken together, our studies implicate HIF-1–stimulated production of ITGB3+ EVs as a key mechanism by which hypoxia promotes BC brain metastasis.

Authors

Yongkang Yang, Chelsey Chen, Yajing Lyu, Olesia Gololobova, Xin Guo, Tina Yi-Ting Huang, Vijay Ramu, Varen Talwar, Elizabeth E. Wicks, Shaima Salman, Daiana Drehmer, Dominic Dordai, Qiaozhu Zuo, Kenneth W. Witwer, Kathleen L. Gabrielson, Gregg L. Semenza

×

cGAS activation converges with intracellular acidification to promote STING aggregation and pyroptosis in tumor models
Li Xiao, … , Qiao Wu, Hang-zi Chen
Li Xiao, … , Qiao Wu, Hang-zi Chen
Published July 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188872.
View: Text | PDF

cGAS activation converges with intracellular acidification to promote STING aggregation and pyroptosis in tumor models

  • Text
  • PDF
Abstract

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is intimately associated with anti-tumoral immunity; however, the direct involvement of this pathway in tumor cell demise remains elusive. Here, we identified a compound dodecyl 6-hydroxy-2-naphthoate (DHN) that induces pyroptosis in melanoma cells through activating the non-canonical cGAS-STING signaling. DHN targets mitochondrial protein cyclophilin D (CypD) to induce the release of mitochondrial DNA, leading to cGAS activation and cyclic GMP-AMP (cGAMP) generation. Meanwhile, DHN-caused intracellular acidification induces PRKR-like endoplasmic reticulum kinase (PERK) activation, which promotes STING phosphorylation and polymerization in the presence of cGAMP, thereby facilitating the aggregation of STING in the endoplasmic reticulum, which serves as a platform to recruit Fas associated via death domain (FADD) and caspase-8, leading to caspase-8 activation and subsequent gasdermin E (GSDME) cleavage, which ultimately results in pyroptosis of tumor cells and tumor regression in mouse models. The occurrence of this non-canonical cGAS-STING pathway-associated pyroptosis is also observed when both cGAS is activated and intracellular pH declines. Collectively, our findings reveal a pathway that links non-canonical cGAS-STING signaling to GSDME-mediated pyroptosis, thereby offering valuable insights for tumor therapy.

Authors

Li Xiao, Yuan-li Ai, Xiang-yu Mi, Han Liang, Xiang Zhi, Liu-zheng Wu, Qi-tao Chen, Tong Gou, Chao Chen, Bo Zhou, Wen-bin Hong, Lu-ming Yao, Jun-jie Chen, Xianming Deng, Fu-nan Li, Qiao Wu, Hang-zi Chen

×

First-generation and preclinical evaluation of an EphA5-targeted antibody-drug conjugate in solid tumors
Fernanda I. Staquicini, … , Wadih Arap, Renata Pasqualini
Fernanda I. Staquicini, … , Wadih Arap, Renata Pasqualini
Published July 15, 2025
Citation Information: J Clin Invest. 2025;135(14):e188492. https://doi.org/10.1172/JCI188492.
View: Text | PDF

First-generation and preclinical evaluation of an EphA5-targeted antibody-drug conjugate in solid tumors

  • Text
  • PDF
Abstract

Contemporary cancer treatment strategies are shifting toward targeted therapies to improve efficacy and minimize toxicity. Here, we report the design and preclinical evaluation of MBRC-101, a first-in-class antibody-drug conjugate (ADC) targeting EphA5, a receptor tyrosine kinase with an established role in embryonic development but not extensively studied in cancer. We show that EphA5 is expressed in multiple solid tumors, including cancers of the aerodigestive (non–small cell lung, head and neck, gastric, colon, and pancreatic) and genitourinary (bladder and ovary) tracts, as well as most breast cancer subsets (including triple-negative tumors), with limited expression in normal tissues. MBRC-101 is a humanized anti-EphA5 antibody conjugated to monomethyl auristatin E (MMAE) through a ThioBridge, thereby ensuring stable drug-to-antibody ratio and reducing off-target effects. MBRC-101 showed potent antitumor activity, achieving complete tumor regression in several patient-derived xenograft models. Preclinical Good Laboratory Practice–compliant toxicology studies in rats and nonhuman primates demonstrated that MBRC-101 is well tolerated, with observed toxicities limited to known MMAE off-target effects. These findings establish EphA5 as a therapeutic target in cancer and support the translational development of MBRC-101 as a promising ADC candidate for clinical evaluation, currently in a first-in-human multicenter investigational trial for patients with advanced solid tumors (ClinicalTrials.gov, NCT06014658).

Authors

Fernanda I. Staquicini, Fenny H.F. Tang, Vanessa de Oliveira, Sun-Young Kim, Ethan R. Chen, Christopher Markosian, Daniela I. Staquicini, Yongjian Wu, J. Kellogg Parsons, Kirstin F. Barnhart, Stephen C. Alley, Isan Chen, Wadih Arap, Renata Pasqualini

×

Combinatorial therapy regimens targeting preclinical models of melanoma resistant to immune checkpoint blockade
Imran Khan, … , Sean McAllister, Mohammed Kashani-Sabet
Imran Khan, … , Sean McAllister, Mohammed Kashani-Sabet
Published July 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI185220.
View: Text | PDF

Combinatorial therapy regimens targeting preclinical models of melanoma resistant to immune checkpoint blockade

  • Text
  • PDF
Abstract

Few effective therapeutic options exist following progression on immune checkpoint blockade (ICB) for melanoma. Here we utilize a platform incorporating transcriptomic profiling, high-throughput drug screening (HTDS) and murine models to demonstrate the pre-clinical efficacy of several combinatorial regimens against ICB-resistant melanoma. Transcriptomic analysis of ICB-resistant melanomas demonstrated activation of several targetable pathways. HTDS targeting these pathways identified several effective combinations in ICB-resistant patient-derived xenograft models. The combination of cobimetinib and regorafenib (termed Cobi+Reg) emerged as a particularly promising regimen, with efficacy against distinct molecular melanoma subtypes and following progression on ICB in immunocompetent models. Transcriptomic and spatial analysis of Cobi+Reg-treated tumors demonstrated upregulation of antigen presentation machinery, with concomitantly increased activated T cell infiltration. Combining Cobi+Reg with ICB was superior to either modality in vivo. This analytical platform exploits the biology of ICB-resistant melanoma to identify therapeutic vulnerabilities, resulting in the identification of drug combinations that form the basis for rational clinical trial design in the setting of advanced melanoma resistant to ICB.

Authors

Imran Khan, Aida Rodriguez-Brotons, Anukana Bhattacharjee, Vladimir Bezrookove, Altaf Dar, David De Semir, Mehdi Nosrati, Ryan Ice, Liliana Soroceanu, Stanley P. Leong, Kevin B. Kim, Yihui Shi, James E. Cleaver, James R. Miller, Pierre-Yves Desprez, John M. Kirkwood, Marcus Bosenberg, Nathan Salomonis, Sean McAllister, Mohammed Kashani-Sabet

×

NOTCH1 reverses immune suppression in small cell lung cancer through reactivation of STING
Yoo Sun Kim, … , David S. Shames, Nitin Roper
Yoo Sun Kim, … , David S. Shames, Nitin Roper
Published July 8, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI185423.
View: Text | PDF

NOTCH1 reverses immune suppression in small cell lung cancer through reactivation of STING

  • Text
  • PDF
Abstract

Downregulation of antigen presentation and lack of immune infiltration are defining features of small cell lung cancer (SCLC) limiting response to immune checkpoint blockade (ICB). While a high MHC Class I, immune-inflamed subset benefits from ICB, underlying mechanisms of immune response in SCLC have yet to be elucidated. Here we show that in the landmark IMpower133 clinical trial high, but not low, NOTCH1 expression is significantly associated with longer survival with the addition of ICB to chemotherapy among ~80% of SCLC patients with neuroendocrine-enriched tumors (ASCL1-enriched, HR 0.39, P = 0.0012; NEUROD1-enriched, HR 0.44, P = 0.024). Overexpression or pharmacologic activation of NOTCH1 in ASCL1 and NEUROD1 SCLC cell lines dramatically upregulates MHC Class I through epigenetic reactivation of STING. In syngeneic mouse models, Notch1 activation reprograms SCLC tumors from immune-excluded to immune-inflamed, facilitating durable, complete responses with ICB combined with a STING agonist. STING1 expression is significantly enriched in high compared to low NOTCH1 expressing tumors in IMpower133 thereby validating our proposed mechanism. Our data reveal a previously undiscovered role for NOTCH1 as a critical driver of SCLC immunogenicity and a potential predictive biomarker for ICB in SCLC. NOTCH1 activation may be a therapeutic strategy to unleash anti-tumor immune responses in SCLC and other neuroendocrine cancers in which NOTCH1 is typically suppressed.

Authors

Yoo Sun Kim, Barzin Y. Nabet, Briana N. Cortez, Nai-Yun Sun, Robin Sebastian, Christophe E. Redon, Anagh Ray, Liang Liu, Afeez A. Ishola, Sarah Loew, Anjali Dhall, Sivasish Sindiri, Velimir Gayevskiy, Min-Jung Lee, Shraddha Rastogi, Nahoko Sato, Noemi Kedei, Thorkell Andresson, Sudipto Das, Suresh Kumar, Alan E. Bers, Hongliang Zhang, Alberto Chiappori, Priyanka Gopal, Mohamed E. Abazeed, Haobin Chen, Mirit I. Aladjem, Yves Pommier, Moises J. Velez, David S. Shames, Nitin Roper

×

Tumoral RCOR2 promotes tumor development through dual epigenetic regulation of tumor plasticity and immunogenicity
Lei Bao, … , Yingfei Wang, Weibo Luo
Lei Bao, … , Yingfei Wang, Weibo Luo
Published July 3, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188801.
View: Text | PDF

Tumoral RCOR2 promotes tumor development through dual epigenetic regulation of tumor plasticity and immunogenicity

  • Text
  • PDF
Abstract

Gain of plasticity and loss of MHC-II enable tumor cells to evade immune surveillance contributing to tumor development. Here, we showed that the transcriptional corepressor RCOR2 is a key factor that integrates two epigenetic programs surveilling tumor plasticity and immunogenicity. RCOR2 was upregulated predominantly in tumor cells and promoted tumor development in mice through reducing tumor cell death by CD4+/CD8+ T cells and inducing cancer stemness. Mechanistically, RCOR2 repressed RNF43 expression through LSD1-mediated demethylation of histone H3 at lysine 4 to induce activation of Wnt/β-catenin and tumor stemness. Simultaneously, RCOR2 inhibited CIITA expression through HDAC1/2-mediated deacetylation of histone H4 at lysine 16, leading to MHC-II silencing in tumor cells and subsequent impairment of CD4+/CD8+ T cell immunosurveillance, thereby promoting immune evasion. RCOR2 loss potentiated anti-PD-1 therapy in mouse models of cancer and correlated with better response to anti-PD-1 therapy in human patients. Collectively, these findings uncover a “two birds with one stone” effect for RCOR2, highlighting its potential as a valuable target for improved cancer therapy.

Authors

Lei Bao, Ming Zhu, Maowu Luo, Ashwani Kumar, Yan Peng, Chao Xing, Yingfei Wang, Weibo Luo

×

Targeting MTAP increases PARP inhibitor susceptibility in triple-negative breast cancer through a feed-forward loop
Xiangyu Zeng, … , Liewei Wang, Zhenkun Lou
Xiangyu Zeng, … , Liewei Wang, Zhenkun Lou
Published July 1, 2025
Citation Information: J Clin Invest. 2025;135(13):e188120. https://doi.org/10.1172/JCI188120.
View: Text | PDF

Targeting MTAP increases PARP inhibitor susceptibility in triple-negative breast cancer through a feed-forward loop

  • Text
  • PDF
Abstract

Triple-negative breast cancer (TNBC) represents the most malignant subtype of breast cancer. The clinical application of PARP inhibitors (PARPi) is limited by the low frequency of BRCA1/2 mutations in TNBC. Here, we identified that MTAP deletion sensitized genotoxic agents in our clinical cohort of metastatic TNBC. Further study demonstrated that MTAP deficiency or inhibition rendered TNBC susceptibility to chemotherapeutic agents, particularly PARPi. Mechanistically, targeting MTAP that synergized with PARPi by disrupting the METTL16-MAT2A axis involved in methionine metabolism and depleting in vivo s-adenosylmethionine (SAM) levels. Exhausted SAM in turn impaired PARPi-induced DNA damage repair through attenuation of MRE11 recruitment and end resection by diminishing MRE11 methylation. Notably, brain metastatic TNBC markedly benefited from a lower dose of PARPi and MTAP deficiency/inhibition synergy due to the inherently limited methionine environment in the brain. Collectively, our findings revealed a feed-forward loop between methionine metabolism and DNA repair through SAM, highlighting a therapeutic strategy of PARPi combined with MTAP deficiency/inhibition for TNBC.

Authors

Xiangyu Zeng, Fei Zhao, Xinyi Tu, Yong Zhang, Wen Yang, Jing Hou, Qi Jiang, Shouhai Zhu, Zheming Wu, Yalan Hao, Lingxin Zhang, Richard M. Weinshilboum, Kaixiong Tao, Liewei Wang, Zhenkun Lou

×

Co-targeting TGF-β and PD-L1 sensitizes triple-negative breast cancer to experimental immunogenic cisplatin-eribulin chemotherapy doublet
Laura Kalfeist, … , Emeric Limagne, Sylvain Ladoire
Laura Kalfeist, … , Emeric Limagne, Sylvain Ladoire
Published July 1, 2025
Citation Information: J Clin Invest. 2025;135(13):e184422. https://doi.org/10.1172/JCI184422.
View: Text | PDF

Co-targeting TGF-β and PD-L1 sensitizes triple-negative breast cancer to experimental immunogenic cisplatin-eribulin chemotherapy doublet

  • Text
  • PDF
Abstract

In preclinical mouse models of triple-negative breast cancer (TNBC), we show that a combination of chemotherapy with cisplatin (CDDP) and eribulin (Eri) was additive from an immunological point of view and was accompanied by the induction of an intratumoral immune and inflammatory response favored by the immunogenic cell death induced by CDDP, as well as by the vascular and tumor stromal remodeling induced by each chemotherapy. Unexpectedly, despite the favorable immune context created by this immunomodulatory chemotherapy combination, our models remained refractory to the addition of anti–PD-L1 immunotherapy. These surprising observations led us to discover that CDDP chemotherapy was simultaneously responsible for the production of TGF-β by several populations of cells present in tumors, which favored the emergence of different subpopulations of immune cells and cancer-associated fibroblasts characterized by immunosuppressive properties. Accordingly, co-treatment with anti–TGF-β restored the immunological synergy between this immunogenic doublet of chemotherapy and anti–PD-L1 in a CD8-dependent manner. Translational studies revealed the unfavorable prognostic effect of the TGF-β pathway on the immune response in human TNBC, as well as the ability of CDDP to induce this cytokine also in human TNBC cell lines, thus highlighting the clinical relevance of targeting TGF-β in the context of human TNBC treated with chemoimmunotherapy.

Authors

Laura Kalfeist, Fanny Ledys, Stacy Petit, Cyriane Poirrier, Samia Kada Mohammed, Loïck Galland, Valentin Derangère, Alis Ilie, David Rageot, Romain Aucagne, Pierre-Simon Bellaye, Caroline Truntzer, Marion Thibaudin, Mickaël Rialland, François Ghiringhelli, Emeric Limagne, Sylvain Ladoire

×

Blocking immune checkpoint LAIR1 with antibody blockade or 3-in-1 CAR T cells enhances antitumor response
Haipeng Tao, … , W. Gregory Sawyer, Jianping Huang
Haipeng Tao, … , W. Gregory Sawyer, Jianping Huang
Published July 1, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI184043.
View: Text | PDF

Blocking immune checkpoint LAIR1 with antibody blockade or 3-in-1 CAR T cells enhances antitumor response

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME) and dampen the immune response, negatively affecting patient survival. Therefore, targeting TAMs could address the limitations of current cancer treatments. However, drug development in this area remains limited. The Leukocyte-associated Immunoglobulin-like Receptor-1 (LAIR1), also called CD305, is prominently expressed on the surface of TAMs. We have uncovered a previously unrecognized immunosuppressive LAIR1 → Factor XIII A (FXIII-A) → Collagen IV pathway across various cancer types. Inhibition of LAIR1, either through knockout (Lair1–/–), antibody blockade (aLAIR1), or a chimeric antigen receptor (CAR) design (3-in-1 CAR by combining tumor targeting, T cell trafficking, and remodeling of the immunosuppressive TME in one CAR construct) provides enhanced antitumor response. LAIR1 inhibition enhances peripheral and intratumoral CD8 memory T-cell populations, induces a phenotypic shift of M2-like Macrophages towards M1, and normalizes tumor collagen IV and structural components in the TME, facilitating effective tumor-T cell interactions and tumor suppression. Enhanced antitumor responses were observed when Lair1–/– or aLAIR1 was used alone or combined with CAR T cells or when the 3-in-1 CAR T cells were used solely in chemotherapy-radiation-PD-1 blockade-resistant tumor models. These findings position LAIR1 inhibition as a promising strategy for cancer immunotherapies.

Authors

Haipeng Tao, Dongjiang Chen, Changlin Yang, Duy T. Nguyen, Georges Abboud, Ruixuan Liu, Tianyi Liu, Avirup Chakraborty, Alicia Y. Hou, Nicole A. Petit, Muhammad Abbas, Robert W. Davis, Janie Zhang, Christina Von Roemeling, Mohammed O. Gbadamosi, Linchun Jin, Tongjun Gu, Tuo Lin, Pengchen Wang, Alfonso Pepe, Diego Ivan Pedro, Hector R. Mendez-Gomez, Chao Xie, Aida Karachi, Frances Weidert, Dan Jin, Chenggang Wang, Kaytora Long-James, Elizabeth K. Molchan, Paul Castillo, John A. Ligon, Ashley P. Ghiaseddin, Elias J. Sayour, Maryam Rahman, Loic P. Deleyrolle, Betty Y.S. Kim, Duane A. Mitchell, W. Gregory Sawyer, Jianping Huang

×

BET inhibitors reduce tumor growth in preclinical models of gastrointestinal gene signature-positive castration-resistant prostate cancer
Shipra Shukla, … , Ping Chi, Yu Chen
Shipra Shukla, … , Ping Chi, Yu Chen
Published June 24, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI180378.
View: Text | PDF

BET inhibitors reduce tumor growth in preclinical models of gastrointestinal gene signature-positive castration-resistant prostate cancer

  • Text
  • PDF
Abstract

A subgroup (~20-30%) of castration-resistant prostate cancer (CRPC) aberrantly expresses a gastrointestinal (GI) transcriptome governed by two GI-lineage-restricted transcription factors, HNF1A and HNF4G. In this study, we found that expression of GI transcriptome in CRPC correlates with adverse clinical outcomes to androgen receptor signaling inhibitor treatment and shorter overall survival. Bromo- and extra-terminal domain inhibitors (BETi) downregulated HNF1A, HNF4G, and the GI transcriptome in multiple CRPC models, including cell lines, patient-derived organoids, and patient-derived xenografts, while AR and the androgen-dependent transcriptome were largely spared. Accordingly, BETi selectively inhibited growth of GI transcriptome-positive preclinical models of prostate cancer. Mechanistically, BETi inhibited BRD4 binding at enhancers globally, including both AR and HNF4G bound enhancers while gene expression was selectively perturbed. Restoration of HNF4G expression in the presence of BETi rescued target gene expression without rescuing BRD4 binding. This suggests that inhibition of master transcription factors expression underlies the selective transcriptional effects of BETi.

Authors

Shipra Shukla, Dan Li, Woo Hyun Cho, Dana M. Schoeps, Holly M. Nguyen, Jennifer L. Conner, Marjorie L. Roskes, Anisha Tehim, Gabriella Bayshtok, Mohini R. Pachai, Juan Yan, Nicholas A. Teri, Eric Campeau, Sarah Attwell, Patrick Trojer, Irina Ostrovnaya, Anuradha Gopalan, Ekta Khurana, Eva Corey, Ping Chi, Yu Chen

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 134
  • 135
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts