Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Nephrology

  • 277 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 22
  • 23
  • 24
  • …
  • 27
  • 28
  • Next →
Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells
Lihua Bao, … , Stuart J. Shankland, Richard J. Quigg
Lihua Bao, … , Stuart J. Shankland, Richard J. Quigg
Published April 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI36000.
View: Text | PDF

Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells

  • Text
  • PDF
Abstract

Heritable and acquired diseases of podocytes can result in focal and segmental glomerulosclerosis (FSGS). We modeled FSGS by passively transferring mouse podocyte–specific sheep Abs into BALB/c mice. BALB/c mice deficient in the key complement regulator, decay-accelerating factor (DAF), but not WT or CD59-deficient BALB/c mice developed histological and ultrastructural features of FSGS, marked albuminuria, periglomerular monocytic and T cell inflammation, and enhanced T cell reactivity to sheep IgG. All of these findings, which are characteristic of FSGS, were substantially reduced by depleting CD4+ T cells from Daf–/– mice. Furthermore, WT kidneys transplanted into Daf–/– recipients and kidneys of DAF-sufficient but T cell–deficient Balb/cnu/nu mice reconstituted with Daf–/– T cells developed FSGS. In contrast, DAF-deficient kidneys in WT hosts and Balb/cnu/nu mice reconstituted with DAF-sufficient T cells did not develop FSGS. Thus, we have described what we believe to be a novel mouse model of FSGS attributable to DAF-deficient T cell immune responses. These findings add to growing evidence that complement-derived signals shape T cell responses, since T cells that recognize sheep Abs bound to podocytes can lead to cellular injury and development of FSGS.

Authors

Lihua Bao, Mark Haas, Jeffrey Pippin, Ying Wang, Takashi Miwa, Anthony Chang, Andrew W. Minto, Miglena Petkova, Guilin Qiao, Wen-Chao Song, Charles E. Alpers, Jian Zhang, Stuart J. Shankland, Richard J. Quigg

×

Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis
Steven D. Crowley, … , Mary H. Foster, Thomas M. Coffman
Steven D. Crowley, … , Mary H. Foster, Thomas M. Coffman
Published March 16, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI34862.
View: Text | PDF

Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis

  • Text
  • PDF
Abstract

Studies in humans and animal models indicate a key contribution of angiotensin II to the pathogenesis of glomerular diseases. To examine the role of type 1 angiotensin (AT1) receptors in glomerular inflammation associated with autoimmune disease, we generated MRL-Faslpr/lpr (lpr) mice lacking the major murine type 1 angiotensin receptor (AT1A); lpr mice develop a generalized autoimmune disease with glomerulonephritis that resembles SLE. Surprisingly, AT1A deficiency was not protective against disease but instead substantially accelerated mortality, proteinuria, and kidney pathology. Increased disease severity was not a direct effect of immune cells, since transplantation of AT1A-deficient bone marrow did not affect survival. Moreover, autoimmune injury in extrarenal tissues, including skin, heart, and joints, was unaffected by AT1A deficiency. In murine systems, there is a second type 1 angiotensin receptor isoform, AT1B, and its expression is especially prominent in the renal glomerulus within podocytes. Further, expression of renin was enhanced in kidneys of AT1A-deficient lpr mice, and they showed evidence of exaggerated AT1B receptor activation, including substantially increased podocyte injury and expression of inflammatory mediators. Administration of losartan, which blocks all type 1 angiotensin receptors, reduced markers of kidney disease, including proteinuria, glomerular pathology, and cytokine mRNA expression. Since AT1A-deficient lpr mice had low blood pressure, these findings suggest that activation of type 1 angiotensin receptors in the glomerulus is sufficient to accelerate renal injury and inflammation in the absence of hypertension.

Authors

Steven D. Crowley, Matthew P. Vasievich, Phillip Ruiz, Samantha K. Gould, Kelly K. Parsons, A. Kathy Pazmino, Carie Facemire, Benny J. Chen, Hyung-Suk Kim, Trinh T. Tran, David S. Pisetsky, Laura Barisoni, Minolfa C. Prieto-Carrasquero, Marie Jeansson, Mary H. Foster, Thomas M. Coffman

×

Disruption of the Ang II type 1 receptor promotes longevity in mice
Ariela Benigni, … , Thomas M. Coffman, Giuseppe Remuzzi
Ariela Benigni, … , Thomas M. Coffman, Giuseppe Remuzzi
Published February 9, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI36703.
View: Text | PDF

Disruption of the Ang II type 1 receptor promotes longevity in mice

  • Text
  • PDF
Abstract

The renin-angiotensin system plays a role in the etiology of hypertension and the pathophysiology of cardiac and renal diseases in humans. Ang II is the central product of this system and is involved in regulating immune responses, inflammation, cell growth, and proliferation by acting through Ang II type 1 receptors (AT1 and AT2). Here, we show that targeted disruption of the Agtr1a gene that encodes AT1A results in marked prolongation of life span in mice. Agtr1a–/– mice developed less cardiac and vascular injury, and multiple organs from these mice displayed less oxidative damage than wild-type mice. The longevity phenotype was associated with an increased number of mitochondria and upregulation of the prosurvival genes nicotinamide phosphoribosyltransferase (Nampt) and sirtuin 3 (Sirt3) in the kidney. In cultured tubular epithelial cells, Ang II downregulated Sirt3 mRNA, and this effect was inhibited by an AT1 antagonist. These results demonstrate that disruption of AT1 promotes longevity in mice, possibly through the attenuation of oxidative stress and overexpression of prosurvival genes, and suggests that the Ang II/AT1 pathway may be targeted to influence life span in mammals.

Authors

Ariela Benigni, Daniela Corna, Carla Zoja, Aurelio Sonzogni, Roberto Latini, Monica Salio, Sara Conti, Daniela Rottoli, Lorena Longaretti, Paola Cassis, Marina Morigi, Thomas M. Coffman, Giuseppe Remuzzi

×

Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney
Ildikó Toma, … , Elliott Meer, János Peti-Peterdi
Ildikó Toma, … , Elliott Meer, János Peti-Peterdi
Published June 5, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33293.
View: Text | PDF

Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney

  • Text
  • PDF
Abstract

Diabetes mellitus is the most common and rapidly growing cause of end-stage renal disease in developed countries. A classic hallmark of early diabetes mellitus includes activation of the renin-angiotensin system (RAS), which may lead to hypertension and renal tissue injury, but the mechanism of RAS activation is elusive. Here we identified a paracrine signaling pathway in the kidney in which high levels of glucose directly triggered the release of the prohypertensive hormone renin. The signaling cascade involved the local accumulation of succinate and activation of the kidney-specific G protein–coupled metabolic receptor, GPR91, in the glomerular endothelium as observed in rat, mouse, and rabbit kidney sections. Elements of signal transduction included endothelial Ca2+, the production of NO and prostaglandin (PGE2), and their paracrine actions on adjacent renin-producing cells. This GPR91 signaling cascade may serve to modulate kidney function and help remove metabolic waste products through renal hyperfiltration, and it could also link metabolic diseases, such as diabetes, or metabolic syndrome with RAS overactivation, systemic hypertension, and organ injury.

Authors

Ildikó Toma, Jung Julie Kang, Arnold Sipos, Sarah Vargas, Eric Bansal, Fiona Hanner, Elliott Meer, János Peti-Peterdi

×

Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells
Takaharu Ichimura, … , Jeremy S. Duffield, Joseph V. Bonventre
Takaharu Ichimura, … , Jeremy S. Duffield, Joseph V. Bonventre
Published April 15, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34487.
View: Text | PDF

Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells

  • Text
  • PDF
Abstract

Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule–1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1–expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes.

Authors

Takaharu Ichimura, Edwin J.P.v. Asseldonk, Benjamin D. Humphreys, Lakshman Gunaratnam, Jeremy S. Duffield, Joseph V. Bonventre

×

Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease
Nathalie Sabaa, … , Jean-Claude Dussaule, Pierre-Louis Tharaux
Nathalie Sabaa, … , Jean-Claude Dussaule, Pierre-Louis Tharaux
Published April 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33308.
View: Text | PDF

Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease

  • Text
  • PDF
Abstract

Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients.

Authors

Nathalie Sabaa, Lucia de Franceschi, Philippe Bonnin, Yves Castier, Giorgio Malpeli, Haythem Debbabi, Ariane Galaup, Micheline Maier-Redelsperger, Sophie Vandermeersch, Aldo Scarpa, Anne Janin, Bernard Levy, Robert Girot, Yves Beuzard, Christophe Leboeuf, Annie Henri, Stéphane Germain, Jean-Claude Dussaule, Pierre-Louis Tharaux

×

A single nucleotide mutation in the mouse renin promoter disrupts blood pressure regulation
Keiji Tanimoto, … , Kazuyuki Yanai, Akiyoshi Fukamizu
Keiji Tanimoto, … , Kazuyuki Yanai, Akiyoshi Fukamizu
Published February 7, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33824.
View: Text | PDF

A single nucleotide mutation in the mouse renin promoter disrupts blood pressure regulation

  • Text
  • PDF
Abstract

Renin, a major regulatory component of the renin-angiotensin system, plays a pivotal role in regulating blood pressure and electrolyte homeostasis and is predominantly expressed in the kidney. Several cAMP-responsive elements have been identified within renin gene promoters. Here, we study how 2 such elements, renin proximal promoter element-2 (RP-2) and overlapping cAMP and negative regulatory elements (CNRE), affect the transcriptional regulation of renin. We generated Tg mice (TgM) bearing BACs containing either WT or mutant RP-2 or CNRE, integrated at single chromosomal loci. Analysis of the TgM revealed that RP-2 was essential to basal promoter activity in the kidney, while renin mRNA levels did not significantly change in any tissues tested in the CNRE mutant TgM. To evaluate the physiological significance of these mutations, we used the BAC Tg to rescue hypotensive Renin-null mutant mice. As predicted, no renin expression was observed in the kidneys of RP-2 mutant/Renin-null compound mice, whereas renin expression in CNRE mutant compound mice was indistinguishable from that in control mice. Consistent with this, RP-2 mutant animals were hypotensive, while CNRE mutants had normal blood pressure. Thus, transcriptional regulation of renin expression via RP-2 but not CNRE is critical for blood pressure regulation by this gene.

Authors

Keiji Tanimoto, Akiko Sugiura, Sumiyo Kanafusa, Tomoko Saito, Naoto Masui, Kazuyuki Yanai, Akiyoshi Fukamizu

×

Factor I is required for the development of membranoproliferative glomerulonephritis in factor H–deficient mice
Kirsten L. Rose, … , Marina Botto, Matthew C. Pickering
Kirsten L. Rose, … , Marina Botto, Matthew C. Pickering
Published January 17, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI32525.
View: Text | PDF

Factor I is required for the development of membranoproliferative glomerulonephritis in factor H–deficient mice

  • Text
  • PDF
Abstract

The inflammatory kidney disease membranoproliferative glomerulonephritis type II (MPGN2) is associated with dysregulation of the alternative pathway of complement activation. MPGN2 is characterized by the presence of complement C3 along the glomerular basement membrane (GBM). Spontaneous activation of C3 through the alternative pathway is regulated by 2 plasma proteins, factor H and factor I. Deficiency of either of these regulators results in uncontrolled C3 activation, although the breakdown of activated C3 is dependent on factor I. Deficiency of factor H, but not factor I, is associated with MPGN2 in humans, pigs, and mice. To explain this discordance, mice with single or combined deficiencies of these factors were studied. MPGN2 did not develop in mice with combined factor H and I deficiency or in mice deficient in factor I alone. However, administration of a source of factor I to mice with combined factor H and factor I deficiency triggered both activated C3 fragments in plasma and GBM C3 deposition. Mouse renal transplant studies demonstrated that C3 deposited along the GBM was derived from plasma. Together, these findings provide what we believe to be the first evidence that factor I–mediated generation of activated C3 fragments in the circulation is a critical determinant for the development of MPGN2 associated with factor H deficiency.

Authors

Kirsten L. Rose, Danielle Paixao-Cavalcante, Jennifer Fish, Anthony P. Manderson, Talat H. Malik, Anne E. Bygrave, Tao Lin, Steven H. Sacks, Mark J. Walport, H. Terence Cook, Marina Botto, Matthew C. Pickering

×

Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex
Jianghui Hou, … , Siegfried Waldegger, Daniel A. Goodenough
Jianghui Hou, … , Siegfried Waldegger, Daniel A. Goodenough
Published January 10, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33970.
View: Text | PDF

Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex

  • Text
  • PDF
Abstract

Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl– blocker, whereas CLDN16 functioned as a Na+ channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl– permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.

Authors

Jianghui Hou, Aparna Renigunta, Martin Konrad, Antonio S. Gomes, Eveline E. Schneeberger, David L. Paul, Siegfried Waldegger, Daniel A. Goodenough

×

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Published January 2, 2008
Citation Information: J Clin Invest. 2008;118(1):387-387. https://doi.org/10.1172/JCI32738C1.
View: Text | PDF | Amended Article

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1

  • Text
  • PDF
Abstract

Authors

Edward J. Weinman, Rajat S. Biswas, Quihong Peng, Lily Shen, Christina L. Turner, Xiaofei E, Deborah Steplock, Shirish Shenolikar, Rochelle Cunningham

×
  • ← Previous
  • 1
  • 2
  • …
  • 22
  • 23
  • 24
  • …
  • 27
  • 28
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Video AbstractsNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts