Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Cell biology

  • 467 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 45
  • 46
  • 47
  • Next →
Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation
Kazuo Kasai, Mica Ohara-Imaizumi, Noriko Takahashi, Shin Mizutani, Shengli Zhao, Toshiteru Kikuta, Haruo Kasai, Shinya Nagamatsu, Hiroshi Gomi, Tetsuro Izumi
Kazuo Kasai, Mica Ohara-Imaizumi, Noriko Takahashi, Shin Mizutani, Shengli Zhao, Toshiteru Kikuta, Haruo Kasai, Shinya Nagamatsu, Hiroshi Gomi, Tetsuro Izumi
View: Text | PDF

Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation

  • Text
  • PDF
Abstract

The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic β cells.

Authors

Kazuo Kasai, Mica Ohara-Imaizumi, Noriko Takahashi, Shin Mizutani, Shengli Zhao, Toshiteru Kikuta, Haruo Kasai, Shinya Nagamatsu, Hiroshi Gomi, Tetsuro Izumi

×

Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3
Shaoying Li, Soichiro Sato, Xiaojing Yang, Patricia A. Preisig, Robert J. Alpern
Shaoying Li, Soichiro Sato, Xiaojing Yang, Patricia A. Preisig, Robert J. Alpern
View: Text | PDF

Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3

  • Text
  • PDF
Abstract

The present study examines the role of Pyk2 in acid regulation of sodium/hydrogen exchanger 3 (NHE3) activity in OKP cells, a kidney proximal tubule epithelial cell line. Incubation of OKP cells in acid media caused a transient increase in Pyk2 phosphorylation that peaked at 30 seconds and increased Pyk2/c-Src binding at 90 seconds. Pyk2 isolated by immunoprecipitation and studied in a cell-free system was activated and phosphorylated at acidic pH. Acid activation of Pyk2 (a) was specific for Pyk2 in that acid did not activate focal adhesion kinase, (b) required calcium, and (c) was associated with increased affinity for ATP. Transfection of OKP cells with dominant-negative pyk2K457A or small interfering pyk2 duplex RNA blocked acid activation of NHE3, while neither had an effect on glucocorticoid activation of NHE3. In addition, pyk2K457A blocked acid activation of c-Src kinase, which is also required for acid regulation of NHE3. The present results demonstrate that Pyk2 is directly activated by acidic pH and that Pyk2 activation is required for acid activation of c-Src kinase and NHE3. Given that partially purified Pyk2 can be activated by acid in a cell-free system, Pyk2 may serve as the pH sensor that initiates the acid-regulated signaling cascade involved in NHE3 regulation.

Authors

Shaoying Li, Soichiro Sato, Xiaojing Yang, Patricia A. Preisig, Robert J. Alpern

×

Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation
Fang Yan, Sutha K. John, Guinn Wilson, David S. Jones, M. Kay Washington, D. Brent Polk
Fang Yan, Sutha K. John, Guinn Wilson, David S. Jones, M. Kay Washington, D. Brent Polk
View: Text | PDF

Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation

  • Text
  • PDF
Abstract

TNF plays a pathogenic role in inflammatory bowel diseases (IBDs), which are characterized by altered cytokine production and increased intestinal epithelial cell apoptosis. In vitro studies suggest that kinase suppressor of Ras-1 (KSR1) is an essential regulatory kinase for TNF-stimulated survival pathways in intestinal epithelial cell lines. Here we use a KSR1-deficient mouse model to study the role of KSR1 in regulating intestinal cell fate during cytokine-mediated inflammation. We show that KSR1 and its target signaling pathways are activated in inflamed colon mucosa. Loss of KSR1 increases susceptibility to chronic colitis and TNF-induced apoptosis in the intestinal epithelial cell. Furthermore, disruption of KSR1 expression enhances TNF-induced apoptosis in mouse colon epithelial cells and is associated with a failure to activate antiapoptotic signals including Raf-1/MEK/ERK, NF-κB, and Akt/protein kinase B. These effects are reversed by WT, but not kinase-inactive, KSR1. We conclude that KSR1 has an essential protective role in the intestinal epithelial cell during inflammation through activation of cell survival pathways.

Authors

Fang Yan, Sutha K. John, Guinn Wilson, David S. Jones, M. Kay Washington, D. Brent Polk

×

Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis
Jörn Karhausen, Glenn T. Furuta, John E. Tomaszewski, Randall S. Johnson, Sean P. Colgan, Volker H. Haase
Jörn Karhausen, Glenn T. Furuta, John E. Tomaszewski, Randall S. Johnson, Sean P. Colgan, Volker H. Haase
View: Text | PDF

Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis

  • Text
  • PDF
Abstract

Mucosal epithelial cells are uniquely equipped to maintain barrier function even under adverse conditions. Previous studies have implicated hypoxia in mucosal tissue damage resulting from both acute and chronic inflammation. Given the importance of the transcriptional regulator hypoxia-inducible factor-1 (HIF-1) for adaptive hypoxia responses, we hypothesized that HIF-1 may serve as a barrier-protective element during mucosal inflammation. Initial studies of hapten-based murine colitis revealed extensive mucosal hypoxia and concomitant HIF-1 activation during colitis. To study this in more detail, we generated 2 mouse lines with intestinal epithelium–targeted expression of either mutant Hif1a (inability to form HIF-1) or mutant von Hippel-Lindau gene (Vhlh; constitutively active HIF-1). Studies of colitis in these mice revealed that decreased HIF-1 expression correlated with more severe clinical symptoms (mortality, weight loss, colon length), while increased HIF levels were protective in these parameters. Furthermore, colons with constitutive activation of HIF displayed increased expression levels of HIF-1–regulated barrier-protective genes (multidrug resistance gene-1, intestinal trefoil factor, CD73), resulting in attenuated loss of barrier during colitis in vivo. Taken together, these studies provide insight into tissue microenvironmental changes during model inflammatory bowel disease and identify HIF-1 as a critical factor for barrier protection during mucosal insult.

Authors

Jörn Karhausen, Glenn T. Furuta, John E. Tomaszewski, Randall S. Johnson, Sean P. Colgan, Volker H. Haase

×

Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis
Roderick J. Phillips, Marie D. Burdick, Kurt Hong, Marin A. Lutz, Lynne A. Murray, Ying Ying Xue, John A. Belperio, Michael P. Keane, Robert M. Strieter
Roderick J. Phillips, Marie D. Burdick, Kurt Hong, Marin A. Lutz, Lynne A. Murray, Ying Ying Xue, John A. Belperio, Michael P. Keane, Robert M. Strieter
View: Text | PDF

Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis

  • Text
  • PDF
Abstract

Previous reports have identified a circulating pool of CD45+ collagen I+ CXCR4+ (CD45+Col I+CXCR4+) cells, termed fibrocytes, that traffic to areas of fibrosis. No studies have demonstrated that these cells actually contribute to fibrosis, however. Pulmonary fibrosis was originally thought to be mediated solely by resident lung fibroblasts. Here we show that a population of human CD45+Col I+CXCR4+ circulating fibrocytes migrates in response to CXCL12 and traffics to the lungs in a murine model of bleomycin-induced pulmonary fibrosis. Next, we demonstrated that murine CD45+Col I+CXCR4+ fibrocytes also traffic to the lungs in response to a bleomycin challenge. Maximal intrapulmonary recruitment of CD45+Col I+CXCR4+ fibrocytes directly correlated with increased collagen deposition in the lungs. Treatment of bleomycin-exposed animals with specific neutralizing anti-CXCL12 Ab’s inhibited intrapulmonary recruitment of CD45+Col I+CXCR4+ circulating fibrocytes and attenuated lung fibrosis. Thus, our results demonstrate, we believe for the first time, that circulating fibrocytes contribute to the pathogenesis of pulmonary fibrosis.

Authors

Roderick J. Phillips, Marie D. Burdick, Kurt Hong, Marin A. Lutz, Lynne A. Murray, Ying Ying Xue, John A. Belperio, Michael P. Keane, Robert M. Strieter

×

Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore
Magdalena Juhaszova, Dmitry B. Zorov, Suhn-Hee Kim, Salvatore Pepe, Qin Fu, Kenneth W. Fishbein, Bruce D. Ziman, Su Wang, Kirsti Ytrehus, Christopher L. Antos, Eric N. Olson, Steven J. Sollott
Magdalena Juhaszova, Dmitry B. Zorov, Suhn-Hee Kim, Salvatore Pepe, Qin Fu, Kenneth W. Fishbein, Bruce D. Ziman, Su Wang, Kirsti Ytrehus, Christopher L. Antos, Eric N. Olson, Steven J. Sollott
View: Text | PDF

Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore

  • Text
  • PDF
Abstract

Environmental stresses converge on the mitochondria that can trigger or inhibit cell death. Excitable, postmitotic cells, in response to sublethal noxious stress, engage mechanisms that afford protection from subsequent insults. We show that reoxygenation after prolonged hypoxia reduces the reactive oxygen species (ROS) threshold for the mitochondrial permeability transition (MPT) in cardiomyocytes and that cell survival is steeply negatively correlated with the fraction of depolarized mitochondria. Cell protection that exhibits a memory (preconditioning) results from triggered mitochondrial swelling that causes enhanced substrate oxidation and ROS production, leading to redox activation of PKC, which inhibits glycogen synthase kinase-3β (GSK-3β). Alternatively, receptor tyrosine kinase or certain G protein–coupled receptor activation elicits cell protection (without mitochondrial swelling or durable memory) by inhibiting GSK-3β, via protein kinase B/Akt and mTOR/p70s6k pathways, PKC pathways, or protein kinase A pathways. The convergence of these pathways via inhibition of GSK-3β on the end effector, the permeability transition pore complex, to limit MPT induction is the general mechanism of cardiomyocyte protection.

Authors

Magdalena Juhaszova, Dmitry B. Zorov, Suhn-Hee Kim, Salvatore Pepe, Qin Fu, Kenneth W. Fishbein, Bruce D. Ziman, Su Wang, Kirsti Ytrehus, Christopher L. Antos, Eric N. Olson, Steven J. Sollott

×

Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf
Martin O. Bergo, Bryant J. Gavino, Christine Hong, Anne P. Beigneux, Martin McMahon, Patrick J. Casey, Stephen G. Young
Martin O. Bergo, Bryant J. Gavino, Christine Hong, Anne P. Beigneux, Martin McMahon, Patrick J. Casey, Stephen G. Young
View: Text | PDF

Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf

  • Text
  • PDF
Abstract

Isoprenylcysteine carboxyl methyltransferase (Icmt) methylates the carboxyl-terminal isoprenylcysteine of CAAX proteins (e.g., Ras and Rho proteins). In the case of the Ras proteins, carboxyl methylation is important for targeting of the proteins to the plasma membrane. We hypothesized that a knockout of Icmt would reduce the ability of cells to be transformed by K-Ras. Fibroblasts harboring a floxed Icmt allele and expressing activated K-Ras (K-Ras-Icmtflx/flx) were treated with Cre-adenovirus, producing K-Ras-IcmtΔ/Δ fibroblasts. Inactivation of Icmt inhibited cell growth and K-Ras–induced oncogenic transformation, both in soft agar assays and in a nude mice model. The inactivation of Icmt did not affect growth factor–stimulated phosphorylation of Erk1/2 or Akt1. However, levels of RhoA were greatly reduced as a consequence of accelerated protein turnover. In addition, there was a large Ras/Erk1/2-dependent increase in p21Cip1, which was probably a consequence of the reduced levels of RhoA. Deletion of p21Cip1 restored the ability of K-Ras-IcmtΔ/Δ fibroblasts to grow in soft agar. The effect of inactivating Icmt was not limited to the inhibition of K-Ras–induced transformation: inactivation of Icmt blocked transformation by an oncogenic form of B-Raf (V599E). These studies identify Icmt as a potential target for reducing the growth of K-Ras– and B-Raf–induced malignancies.

Authors

Martin O. Bergo, Bryant J. Gavino, Christine Hong, Anne P. Beigneux, Martin McMahon, Patrick J. Casey, Stephen G. Young

×

Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction
Jan Lammerding, P. Christian Schulze, Tomosaburo Takahashi, Serguei Kozlov, Teresa Sullivan, Roger D. Kamm, Colin L. Stewart, Richard T. Lee
Jan Lammerding, P. Christian Schulze, Tomosaburo Takahashi, Serguei Kozlov, Teresa Sullivan, Roger D. Kamm, Colin L. Stewart, Richard T. Lee
View: Text | PDF

Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction

  • Text
  • PDF
Abstract

Mutations in the lamin A/C gene (LMNA) cause a variety of human diseases including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. The tissue-specific effects of lamin mutations are unclear, in part because the function of lamin A/C is incompletely defined, but the many muscle-specific phenotypes suggest that defective lamin A/C could increase cellular mechanical sensitivity. To investigate the role of lamin A/C in mechanotransduction, we subjected lamin A/C–deficient mouse embryo fibroblasts to mechanical strain and measured nuclear mechanical properties and strain-induced signaling. We found that Lmna–/– cells have increased nuclear deformation, defective mechanotransduction, and impaired viability under mechanical strain. NF-κB–regulated transcription in response to mechanical or cytokine stimulation was attenuated in Lmna–/– cells despite increased transcription factor binding. Lamin A/C deficiency is thus associated with both defective nuclear mechanics and impaired mechanically activated gene transcription. These findings suggest that the tissue-specific effects of lamin A/C mutations observed in the laminopathies may arise from varying degrees of impaired nuclear mechanics and transcriptional activation.

Authors

Jan Lammerding, P. Christian Schulze, Tomosaburo Takahashi, Serguei Kozlov, Teresa Sullivan, Roger D. Kamm, Colin L. Stewart, Richard T. Lee

×

Bone marrow–derived progenitor cells in pulmonary fibrosis
Naozumi Hashimoto, Hong Jin, Tianju Liu, Stephen W. Chensue, Sem H. Phan
Naozumi Hashimoto, Hong Jin, Tianju Liu, Stephen W. Chensue, Sem H. Phan
View: Text | PDF

Bone marrow–derived progenitor cells in pulmonary fibrosis

  • Text
  • PDF
Abstract

The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a significant increase in GFP+ cells that also express type I collagen. GFP+ lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not α-smooth muscle actin. Treatment of isolated GFP+ fibroblasts with TGF-β failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell–derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells.

Authors

Naozumi Hashimoto, Hong Jin, Tianju Liu, Stephen W. Chensue, Sem H. Phan

×

Hyperosmolarity enhances the lung capillary barrier
Zeenat Safdar, Ping Wang, Hideo Ichimura, Andrew C. Issekutz, Sadiqa Quadri, Jahar Bhattacharya
Zeenat Safdar, Ping Wang, Hideo Ichimura, Andrew C. Issekutz, Sadiqa Quadri, Jahar Bhattacharya
View: Text | PDF

Hyperosmolarity enhances the lung capillary barrier

  • Text
  • PDF
Abstract

Although capillary barrier deterioration underlies major inflammatory lung pathology, barrier-enhancing strategies are not available. To consider hyperosmolar therapy as a possible strategy, we gave 15-minute infusions of hyperosmolar sucrose in lung venular capillaries imaged in real time. Surprisingly, this treatment enhanced the capillary barrier, as indicated by quantification of the capillary hydraulic conductivity. The barrier enhancement was sufficient to block the injurious effects of thrombin, TNF-α, and H2O2 in single capillaries, and of intratracheal acid instillation in the whole lung. Capillary immunofluorescence indicated that the hyperosmolar infusion markedly augmented actin filament formation and E-cadherin expression at the endothelial cell periphery. The actin-depolymerizing agent latrunculin B abrogated the hyperosmolar barrier enhancement as well as the actin filament formation, suggesting a role for actin in the barrier response. Furthermore, hyperosmolar infusion blocked TNF-α–induced P-selectin expression in an actin-dependent manner. Our results provide the first evidence to our knowledge that in lung capillaries, hyperosmolarity remodels the endothelial barrier and the actin cytoskeleton to enhance barrier properties and block proinflammatory secretory processes. Hyperosmolar therapy may be beneficial in lung inflammatory disease.

Authors

Zeenat Safdar, Ping Wang, Hideo Ichimura, Andrew C. Issekutz, Sadiqa Quadri, Jahar Bhattacharya

×
  • ← Previous
  • 1
  • 2
  • …
  • 45
  • 46
  • 47
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts