Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A fibrin biofilm covers blood clots and protects from microbial invasion
Fraser L. Macrae, … , Heiko Herwald, Robert A.S. Ariëns
Fraser L. Macrae, … , Heiko Herwald, Robert A.S. Ariëns
Published May 3, 2018
Citation Information: J Clin Invest. 2018;128(8):3356-3368. https://doi.org/10.1172/JCI98734.
View: Text | PDF
Research Article Hematology Vascular biology

A fibrin biofilm covers blood clots and protects from microbial invasion

  • Text
  • PDF
Abstract

Hemostasis requires conversion of fibrinogen to fibrin fibers that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining clots in human and mouse models. We demonstrated that only fibrin is required for formation of the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibers. It was digested by plasmin, and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.

Authors

Fraser L. Macrae, Cédric Duval, Praveen Papareddy, Stephen R. Baker, Nadira Yuldasheva, Katherine J. Kearney, Helen R. McPherson, Nathan Asquith, Joke Konings, Alessandro Casini, Jay L. Degen, Simon D. Connell, Helen Philippou, Alisa S. Wolberg, Heiko Herwald, Robert A.S. Ariëns

×

Figure 1

Film forms on the clot surface at the air-liquid interface.

Options: View larger image (or click on image) Download as PowerPoint
Film forms on the clot surface at the air-liquid interface.
(A and B) SE...
(A and B) SEM of film formed at the air-liquid interface in whole blood and plasma clots. At places where the film is torn (due to SEM sample processing procedures), red blood cells (asterisk), platelets (thick arrow), and fibrin (thin arrow) are observed in whole blood clots (A), and fibrin (asterisk) in plasma clots (B). Red blood cells are also visible through the film in whole blood clots. (C and D) LSCM of film formed at the air-liquid interface in whole blood and plasma clots. Fibrinogen was fluorescently labeled with Alexa Fluor 488 (green) or Alexa Fluor 594 (red). Under fully hydrated conditions of LSCM, tears in the film were not observed. (E) LSCM of a single Z-plane slice of a plasma clot showing continuous film around the clot. The central gap in the clot image is where the pipette was introduced into the plasma drop to inject thrombin. Images represent findings reproduced in at least n = 3 experiments. Scale bars: A and B, 10 μm; C and D, 50 μm; E, 1 mm. All images are representative of n = 3 experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts