Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection
Carly A. Dillen, … , Emanual Maverakis, Lloyd S. Miller
Carly A. Dillen, … , Emanual Maverakis, Lloyd S. Miller
Published February 5, 2018
Citation Information: J Clin Invest. 2018;128(3):1026-1042. https://doi.org/10.1172/JCI96481.
View: Text | PDF
Research Article Immunology Infectious disease

Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection

  • Text
  • PDF
Abstract

The mechanisms that mediate durable protection against Staphylococcus aureus skin reinfections are unclear, as recurrences are common despite high antibody titers and memory T cells. Here, we developed a mouse model of S. aureus skin reinfection to investigate protective memory responses. In contrast with WT mice, IL-1β–deficient mice exhibited poor neutrophil recruitment and bacterial clearance during primary infection that was rescued during secondary S. aureus challenge. The γδ T cells from skin-draining LNs utilized compensatory T cell–intrinsic TLR2/MyD88 signaling to mediate rescue by trafficking and producing TNF and IFN-γ, which restored neutrophil recruitment and promoted bacterial clearance. RNA-sequencing (RNA-seq) of the LNs revealed a clonotypic S. aureus–induced γδ T cell expansion with a complementarity-determining region 3 (CDR3) aa sequence identical to that of invariant Vγ5+ dendritic epidermal T cells. However, this T cell receptor γ (TRG) aa sequence of the dominant CDR3 sequence was generated from multiple gene rearrangements of TRGV5 and TRGV6, indicating clonotypic expansion. TNF- and IFN-γ–producing γδ T cells were also expanded in peripheral blood of IRAK4-deficient humans no longer predisposed to S. aureus skin infections. Thus, clonally expanded γδ T cells represent a mechanism for long-lasting immunity against recurrent S. aureus skin infections.

Authors

Carly A. Dillen, Bret L. Pinsker, Alina I. Marusina, Alexander A. Merleev, Orly N. Farber, Haiyun Liu, Nathan K. Archer, Da B. Lee, Yu Wang, Roger V. Ortines, Steven K. Lee, Mark C. Marchitto, Shuting S. Cai, Alyssa G. Ashbaugh, Larissa S. May, Steven M. Holland, Alexandra F. Freeman, Loren G. Miller, Michael R. Yeaman, Scott I. Simon, Joshua D. Milner, Emanual Maverakis, Lloyd S. Miller

×
Options: View larger image (or click on image) Download as PowerPoint
Analysis of TRG CDR3 V-J junction

Analysis of TRG CDR3 V-J junction


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts