Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes
John F. O’Sullivan, … , Kathleen E. Corey, Robert E. Gerszten
John F. O’Sullivan, … , Kathleen E. Corey, Robert E. Gerszten
Published October 30, 2017
Citation Information: J Clin Invest. 2017;127(12):4394-4402. https://doi.org/10.1172/JCI95995.
View: Text | PDF
Research Article Cardiology Metabolism

Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes

  • Text
  • PDF
Abstract

Unbiased, “nontargeted” metabolite profiling techniques hold considerable promise for biomarker and pathway discovery, in spite of the lack of successful applications to human disease. By integrating nontargeted metabolomics, genetics, and detailed human phenotyping, we identified dimethylguanidino valeric acid (DMGV) as an independent biomarker of CT-defined nonalcoholic fatty liver disease (NAFLD) in the offspring cohort of the Framingham Heart Study (FHS) participants. We verified the relationship between DMGV and early hepatic pathology. Specifically, plasma DMGV levels were correlated with biopsy-proven nonalcoholic steatohepatitis (NASH) in a hospital cohort of individuals undergoing gastric bypass surgery, and DMGV levels fell in parallel with improvements in post-procedure cardiometabolic parameters. Further, baseline DMGV levels independently predicted future diabetes up to 12 years before disease onset in 3 distinct human cohorts. Finally, we provide all metabolite peak data consisting of known and unidentified peaks, genetics, and key metabolic parameters as a publicly available resource for investigations in cardiometabolic diseases.

Authors

John F. O’Sullivan, Jordan E. Morningstar, Qiong Yang, Baohui Zheng, Yan Gao, Sarah Jeanfavre, Justin Scott, Celine Fernandez, Hui Zheng, Sean O’Connor, Paul Cohen, Ramachandran S. Vasan, Michelle T. Long, James G. Wilson, Olle Melander, Thomas J. Wang, Caroline Fox, Randall T. Peterson, Clary B. Clish, Kathleen E. Corey, Robert E. Gerszten

×

Full Text PDF | Download (949.71 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts