Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Ezh2 loss propagates hypermethylation at T cell differentiation–regulating genes to promote leukemic transformation
Changshan Wang, … , Atsushi Iwama, Goro Sashida
Changshan Wang, … , Atsushi Iwama, Goro Sashida
Published August 6, 2018
Citation Information: J Clin Invest. 2018;128(9):3872-3886. https://doi.org/10.1172/JCI94645.
View: Text | PDF
Research Article Hematology Oncology

Ezh2 loss propagates hypermethylation at T cell differentiation–regulating genes to promote leukemic transformation

  • Text
  • PDF
Abstract

Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a new pathological entity with poor outcomes in T cell ALL (T-ALL) that is characterized by a high incidence of loss-of-function mutations in polycomb repressive complex 2 (PRC2) genes. We generated a mouse model of ETP-ALL by deleting Ezh2, one of the PRC2 genes, in p53-null hematopoietic cells. The loss of Ezh2 in p53-null hematopoietic cells impeded the differentiation of ETPs and eventually induced ETP-ALL–like disease in mice, indicating that PRC2 functions as a bona fide tumor suppressor in ETPs. A large portion of PRC2 target genes acquired DNA hypermethylation of their promoters following reductions in H3K27me3 levels upon the loss of Ezh2, which included pivotal T cell differentiation–regulating genes. The reactivation of a set of regulators by a DNA-demethylating agent, but not the transduction of single regulator genes, effectively induced the differentiation of ETP-ALL cells. Thus, PRC2 protects key T cell developmental regulators from DNA hypermethylation in order to keep them primed for activation upon subsequent differentiation phases, while its insufficiency predisposes ETPs to leukemic transformation. These results revealed a previously unrecognized epigenetic switch in response to PRC2 dysfunction and provide the basis for specific rational epigenetic therapy for ETP-ALL with PRC2 insufficiency.

Authors

Changshan Wang, Motohiko Oshima, Daisuke Sato, Hirotaka Matsui, Sho Kubota, Kazumasa Aoyama, Yaeko Nakajima-Takagi, Shuhei Koide, Jun Matsubayashi, Makiko Mochizuki-Kashio, Takako Nakano-Yokomizo, Jie Bai, Toshitaka Nagao, Akinori Kanai, Atsushi Iwama, Goro Sashida

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 1,019 202
PDF 176 229
Figure 172 0
Supplemental data 81 27
Citation downloads 18 0
Totals 1,466 458
Total Views 1,924

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts