Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
STAT5BN642H is a driver mutation for T cell neoplasia
Ha Thi Thanh Pham, … , Veronika Sexl, Richard Moriggl
Ha Thi Thanh Pham, … , Veronika Sexl, Richard Moriggl
Published December 4, 2017
Citation Information: J Clin Invest. 2018;128(1):387-401. https://doi.org/10.1172/JCI94509.
View: Text | PDF
Research Article Hematology Oncology

STAT5BN642H is a driver mutation for T cell neoplasia

  • Text
  • PDF
Abstract

STAT5B is often mutated in hematopoietic malignancies. The most frequent STAT5B mutation, Asp642His (N642H), has been found in over 90 leukemia and lymphoma patients. Here, we used the Vav1 promoter to generate transgenic mouse models that expressed either human STAT5B or STAT5BN642H in the hematopoietic compartment. While STAT5B-expressing mice lacked a hematopoietic phenotype, the STAT5BN642H-expressing mice rapidly developed T cell neoplasms. Neoplasia manifested as transplantable CD8+ lymphoma or leukemia, indicating that the STAT5BN642H mutation drives cancer development. Persistent and enhanced levels of STAT5BN642H tyrosine phosphorylation in transformed CD8+ T cells led to profound changes in gene expression that were accompanied by alterations in DNA methylation at potential histone methyltransferase EZH2-binding sites. Aurora kinase genes were enriched in STAT5BN642H-expressing CD8+ T cells, which were exquisitely sensitive to JAK and Aurora kinase inhibitors. Together, our data suggest that JAK and Aurora kinase inhibitors should be further explored as potential therapeutics for lymphoma and leukemia patients with the STAT5BN642H mutation who respond poorly to conventional chemotherapy.

Authors

Ha Thi Thanh Pham, Barbara Maurer, Michaela Prchal-Murphy, Reinhard Grausenburger, Eva Grundschober, Tahereh Javaheri, Harini Nivarthi, Auke Boersma, Thomas Kolbe, Mohamed Elabd, Florian Halbritter, Jan Pencik, Zahra Kazemi, Florian Grebien, Markus Hengstschläger, Lukas Kenner, Stefan Kubicek, Matthias Farlik, Christoph Bock, Peter Valent, Mathias Müller, Thomas Rülicke, Veronika Sexl, Richard Moriggl

×

Figure 3

hSTAT5BN642H mice suffer from an aggressive CD8+ T cell lymphoma.

Options: View larger image (or click on image) Download as PowerPoint
hSTAT5BN642H mice suffer from an aggressive CD8+ T cell lymphoma.
(A) Ma...
(A) Macroscopic comparison of hSTAT5BN642H and hSTAT5B mouse spleens and LNs with those from WT mice. Scale bars: 1 cm. (B) Modified Wright staining of blood smears from hSTAT5BN642H (N642H), hSTAT5B (hS5B), and WT mice (original magnification, ×100). (C) WBC count using an animal blood counter (scil Vet ABC). CD8/CD4 ratios in the peripheral blood were determined using flow cytometry. Analysis included 7- to 10-week-old WT (n = 20), hSTAT5B (n = 15), and hSTAT5BN642H (n = 20) mice. (D) CD8/CD4 T cell ratios in LNs were determined using flow cytometry. Analyses included 7-week-old WT (n = 5), hSTAT5B (n = 5), and hSTAT5BN642H (n = 5) mice. (E) Quantification of the absolute number of CD4+ and CD8+ T cells, myeloid cells (CD11b+Gr1+), and B cells (CD19+) in spleens from hSTAT5BN642H- and hSTAT5B-transgenic mice and WT mice. Analyses included 7-week-old WT (n = 13), hSTAT5B (n = 6), and hSTAT5BN642H (n = 6 and 11) mice. (F) CD3+CD8+ splenic cells were analyzed by flow cytometry for their expression of CD25. Analyses included 8-week-old WT (n = 8), hSTAT5B (n = 9), and (n = 6) hSTAT5BN642H mice. (G) CD3+CD8+ splenic cells were further analyzed for CD62L and CD44 expression. Analyses included WT (n = 8), hSTAT5B (n = 5), and hSTAT5BN642H (n = 5) mice at 8 weeks of age. Data represent the mean ± SD. n ≥ 6. **P < 0.01 and ***P < 0.001, by 1-way ANOVA with Bonferroni’s correction.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts