Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hepatic Gi signaling regulates whole-body glucose homeostasis
Mario Rossi, … , Owen P. McGuinness, Jürgen Wess
Mario Rossi, … , Owen P. McGuinness, Jürgen Wess
Published January 16, 2018
Citation Information: J Clin Invest. 2018;128(2):746-759. https://doi.org/10.1172/JCI94505.
View: Text | PDF
Research Article Endocrinology

Hepatic Gi signaling regulates whole-body glucose homeostasis

  • Text
  • PDF
Abstract

An increase in hepatic glucose production (HGP) is a key feature of type 2 diabetes. Excessive signaling through hepatic Gs–linked glucagon receptors critically contributes to pathologically elevated HGP. Here, we tested the hypothesis that this metabolic impairment can be counteracted by enhancing hepatic Gi signaling. Specifically, we used a chemogenetic approach to selectively activate Gi-type G proteins in mouse hepatocytes in vivo. Unexpectedly, activation of hepatic Gi signaling triggered a pronounced increase in HGP and severely impaired glucose homeostasis. Moreover, increased Gi signaling stimulated glucose release in human hepatocytes. A lack of functional Gi-type G proteins in hepatocytes reduced blood glucose levels and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Additionally, we delineated a signaling cascade that links hepatic Gi signaling to ROS production, JNK activation, and a subsequent increase in HGP. Taken together, our data support the concept that drugs able to block hepatic Gi–coupled GPCRs may prove beneficial as antidiabetic drugs.

Authors

Mario Rossi, Lu Zhu, Sara M. McMillin, Sai Prasad Pydi, Shanu Jain, Lei Wang, Yinghong Cui, Regina J. Lee, Amanda H. Cohen, Hideaki Kaneto, Morris J. Birnbaum, Yanling Ma, Yaron Rotman, Jie Liu, Travis J. Cyphert, Toren Finkel, Owen P. McGuinness, Jürgen Wess

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 893 120
PDF 105 29
Figure 351 4
Supplemental data 58 8
Citation downloads 71 0
Totals 1,478 161
Total Views 1,639
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts