Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling
Yaping Zhang, … , Guo-Qiang Chen, Junke Zheng
Yaping Zhang, … , Guo-Qiang Chen, Junke Zheng
Published March 26, 2018
Citation Information: J Clin Invest. 2018;128(5):1737-1751. https://doi.org/10.1172/JCI93198.
View: Text | PDF
Research Article Hematology

JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling

  • Text
  • PDF
Abstract

Leukemia-initiating cells (LICs) are responsible for the initiation, development, and relapse of leukemia. The identification of novel therapeutic LIC targets is critical to curing leukemia. In this report, we reveal that junctional adhesion molecule 3 (JAM3) is highly enriched in both mouse and human LICs. Leukemogenesis is almost completely abrogated upon Jam3 deletion during serial transplantations in an MLL-AF9–induced murine acute myeloid leukemia model. In contrast, Jam3 deletion does not affect the functions of mouse hematopoietic stem cells. Moreover, knockdown of JAM3 leads to a dramatic decrease in the proliferation of both human leukemia cell lines and primary LICs. JAM3 directly associates with LRP5 to activate the downstream PDK1/AKT pathway, followed by the downregulation of GSK3β and activation of β-catenin/CCND1 signaling, to maintain the self-renewal ability and cell cycle entry of LICs. Thus, JAM3 may serve as a functional LIC marker and play an important role in the maintenance of LIC stemness through unexpected LRP5/PDK1/AKT/GSK3β/β-catenin/CCND1 signaling pathways but not via its canonical role in cell junctions and migration. JAM3 may be an ideal therapeutic target for the eradication of LICs without influencing normal hematopoiesis.

Authors

Yaping Zhang, Fangzhen Xia, Xiaoye Liu, Zhuo Yu, Li Xie, Ligen Liu, Chiqi Chen, Haishan Jiang, Xiaoxin Hao, Xiaoxiao He, Feifei Zhang, Hao Gu, Jun Zhu, Haitao Bai, Cheng Cheng Zhang, Guo-Qiang Chen, Junke Zheng

×

Figure 1

JAM3 is highly enriched in LICs and required for their self-renewal abilities.

Options: View larger image (or click on image) Download as PowerPoint
JAM3 is highly enriched in LICs and required for their self-renewal abil...
(A) mRNA levels of JAM3 in total BM cells, CMP, GMP, MPP, ST-HSCs, LT-HSCs, YFP+ leukemia cells, YFP+Mac-1+c-Kit+ LICs, and L-GMP cells was measured by quantitative RT-PCR (n = 3). (B–D) MLL-AF9+ leukemia cells were evaluated for LIC frequencies and c-Kit expression levels (MFI) in JAM3+ and JAM3– cells (n = 3; ***P < 0.001, Student’s t test). (E) Representative flow cytometric analysis of leukemia cells in the peripheral blood of recipient mice receiving transplants of WT or Jam3-null MLL-AF9+ BM cells upon the first to third transplantation. (F) Quantification data in E (n = 4–5; ***P < 0.001, 2-way ANOVA followed by Bonferroni’s post-test). PB, peripheral blood. (G–I) Survival data for recipient mice (lethally irradiated) receiving WT or Jam3-null MLL-AF9+ BM cells upon the first (G), second (H), and third transplantation (I) (n = 4–5; *P < 0.05, **P < 0.01, log-rank test). (J) Survival data for recipient mice (sublethally irradiated) receiving WT or Jam3-null leukemia cells upon the second transplantation (n = 5; ***P < 0.001, log-rank test). (K) Representative images of Giemsa-Wright staining for WT and Jam3-null MLL-AF9+ BM cells upon the second transplantation. (L) Quantification of the frequencies of blast cells in K (n = 3; ***P < 0.001, Student’s t test). (M) Representative images of the sizes of spleens and livers of recipient mice upon the second transplantation. (N and O) Quantification of the weight of spleens and livers in M (n = 4; *P < 0.05, **P < 0.01, Student’s t test). (P) Histological H&E staining of livers and spleens. (Q) Limiting dilution assays comparing the frequencies of LICs in WT and Jam3-null MLL-AF9+ BM cells. Experiments were conducted 3–5 times for validation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts