Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress
Baran A. Ersoy, … , Ipek Alpertunga, David E. Cohen
Baran A. Ersoy, … , Ipek Alpertunga, David E. Cohen
Published November 20, 2017
Citation Information: J Clin Invest. 2018;128(1):141-156. https://doi.org/10.1172/JCI93123.
View: Text | PDF
Research Article Cell biology Metabolism

Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress

  • Text
  • PDF
Abstract

The incorporation of excess saturated free fatty acids (SFAs) into membrane phospholipids within the ER promotes ER stress, insulin resistance, and hepatic gluconeogenesis. Thioesterase superfamily member 2 (Them2) is a mitochondria-associated long-chain fatty acyl-CoA thioesterase that is activated upon binding phosphatidylcholine transfer protein (PC-TP). Under fasting conditions, the Them2/PC-TP complex directs saturated fatty acyl-CoA toward β-oxidation. Here, we showed that during either chronic overnutrition or acute induction of ER stress, Them2 and PC-TP play critical roles in trafficking SFAs into the glycerolipid biosynthetic pathway to form saturated phospholipids, which ultimately reduce ER membrane fluidity. The Them2/PC-TP complex activated ER stress pathways by enhancing translocon-mediated efflux of ER calcium. The increased cytosolic calcium, in turn, led to the phosphorylation of calcium/calmodulin-dependent protein kinase II, which promoted both hepatic insulin resistance and gluconeogenesis. These findings delineate a mechanistic link between obesity and insulin resistance and establish the Them2/PC-TP complex as an attractive target for the management of hepatic steatosis and insulin resistance.

Authors

Baran A. Ersoy, Kristal M. Maner-Smith, Yingxia Li, Ipek Alpertunga, David E. Cohen

×

Figure 7

Them2 and PC-TP regulate the activity of CaMKII.

Options: View larger image (or click on image) Download as PowerPoint
Them2 and PC-TP regulate the activity of CaMKII.
(A and B) Influence of ...
(A and B) Influence of Them2 or PC-TP knockdown on CaMKII activation was determined in HEK 293E cells treated with Bapta-AM (5 nM) (A), anisomycin (200 μM) (B), or vehicle for 1 hour. Immunoblots represent 3 independent experiments. (C) Reduced activation of CaMKII in livers of Them2–/– mice. Liver homogenates from 12-week-old high-fat diet–fed Them2+/+ (n = 4) and Them2–/– (n = 5) mice were subjected to immunoblot analyses, and bands were quantified by densitometry and normalized to β-actin as control. Error bars represent SEM. *P < 0.05 vs. Them2+/+. Statistical significance was determined by Student’s t test. (D) Postulated mechanism by which Them2 and PC-TP regulate hepatic glucose homeostasis. In the setting of overnutrition, Them2 and PC-TP are proposed to facilitate the incorporation of SFAs into the ER membrane phospholipid composition, which induces loss of ER calcium into the cytosol via translocons. Increased cytosolic calcium accumulation activates CaMKII, which in turn promotes insulin resistance and enhances hepatic glucose production. Efflux of ER calcium promotes ER stress, which is associated with insulin resistance and de novo lipogenesis.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts