Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features
Raphael Carapito, et al.
Raphael Carapito, et al.
View: Text | PDF
Research Article Genetics Hematology

Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features

  • Text
  • PDF
Abstract

Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond–like phenotype.

Authors

Raphael Carapito, Martina Konantz, Catherine Paillard, Zhichao Miao, Angélique Pichot, Magalie S. Leduc, Yaping Yang, Katie L. Bergstrom, Donald H. Mahoney, Deborah L. Shardy, Ghada Alsaleh, Lydie Naegely, Aline Kolmer, Nicodème Paul, Antoine Hanauer, Véronique Rolli, Joëlle S. Müller, Elisa Alghisi, Loïc Sauteur, Cécile Macquin, Aurore Morlon, Consuelo Sebastia Sancho, Patrizia Amati-Bonneau, Vincent Procaccio, Anne-Laure Mosca-Boidron, Nathalie Marle, Naël Osmani, Olivier Lefebvre, Jacky G. Goetz, Sule Unal, Nurten A. Akarsu, Mirjana Radosavljevic, Marie-Pierre Chenard, Fanny Rialland, Audrey Grain, Marie-Christine Béné, Marion Eveillard, Marie Vincent, Julien Guy, Laurence Faivre, Christel Thauvin-Robinet, Julien Thevenon, Kasiani Myers, Mark D. Fleming, Akiko Shimamura, Elodie Bottollier-Lemallaz, Eric Westhof, Claudia Lengerke, Bertrand Isidor, Seiamak Bahram

×

Figure 8

Schematic positioning of SRP54 in the eukaryotic translational machinery.

Options: View larger image (or click on image) Download as PowerPoint
Schematic positioning of SRP54 in the eukaryotic translational machinery...
(A) Ribosomal and SRP cycles. Proteins involved in SDS are depicted: SBDS and EFL1 are involved in the assembly of the 60S and 40S subunits, and DNAJC21 is involved in maturation of the 60S subunit. (B) Close-up of the ribosomal complex bound to the SR on the ER membrane. SRP54 (blue) is part of the SRP composed of 6 proteins (SRP9, SRP14, SRP19, SRP68, SRP72) and of the approximately 300-nucleotide-long 7SL RNA molecule. The signal peptide of the emerging nascent peptide chain is recognized by the M domain of SRP54 and the 7SL RNA. The N and G domains of SRP54 are interacting with the homologous N and G domains of SRα (FtsY). The mutated residues are shown in red.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts