Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression
Peipei Guo, Michael G. Poulos, Brisa Palikuqi, Chaitanya R. Badwe, Raphael Lis, Balvir Kunar, Bi-Sen Ding, Sina Y. Rabbany, Koji Shido, Jason M. Butler, Shahin Rafii
Peipei Guo, Michael G. Poulos, Brisa Palikuqi, Chaitanya R. Badwe, Raphael Lis, Balvir Kunar, Bi-Sen Ding, Sina Y. Rabbany, Koji Shido, Jason M. Butler, Shahin Rafii
View: Text | PDF
Research Article Hematology Vascular biology

Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression

  • Text
  • PDF
Abstract

Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.

Authors

Peipei Guo, Michael G. Poulos, Brisa Palikuqi, Chaitanya R. Badwe, Raphael Lis, Balvir Kunar, Bi-Sen Ding, Sina Y. Rabbany, Koji Shido, Jason M. Butler, Shahin Rafii

×

Figure 7

Endothelial jagged-2 induces Notch2/Hey1 signaling in HSPCs, enhancing engraftment.

Options: View larger image (or click on image) Download as PowerPoint
Endothelial jagged-2 induces Notch2/Hey1 signaling in HSPCs, enhancing e...
(A and B) Schematic view of the knockin Hes1-GFP reporter mouse line (A) and the transplantation assays (B) used to test the role of BMEC jagged-2 in promoting engraftment/expansion of HSPCs. n = 4 for Jag2fl/fl group, n = 3 for Jag2ECKO group. (C) Representative flow plots for the gating strategies for KLS cells in the Jag2fl/fl and Jag2ECKO mice. (D) The number of HSPCs per million BM cells was quantified. (E) The percentage of GFP+ cells among the gated KLS cells is summarized. The data were collected following the transplantation experiment listed in B. (F) Representative flow cytometric plots showing the sorting strategies for KLS cells from Jag2fl/fl or Jag2ECKO mice. (G–I) Real-time qPCR analysis of the sorted HSPCs from Jag2fl/fl or Jag2ECKO mice was carried out for Notch receptors (G) and Notch targets (H and I). For G and I, n = 3 biological replicates for each group. For H, n = 5 for each group. Error bars indicate the SEM. *P < 0.05 and **P < 0.01, by unpaired 2-tailed t test. The numbers in the flow plots represent percentages of cells.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts