Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression
Peipei Guo, … , Jason M. Butler, Shahin Rafii
Peipei Guo, … , Jason M. Butler, Shahin Rafii
Published October 23, 2017
Citation Information: J Clin Invest. 2017;127(12):4242-4256. https://doi.org/10.1172/JCI92309.
View: Text | PDF
Research Article Hematology Vascular biology

Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression

  • Text
  • PDF
Abstract

Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.

Authors

Peipei Guo, Michael G. Poulos, Brisa Palikuqi, Chaitanya R. Badwe, Raphael Lis, Balvir Kunar, Bi-Sen Ding, Sina Y. Rabbany, Koji Shido, Jason M. Butler, Shahin Rafii

×

Figure 2

Endothelial-supplied jagged-2 is not required to maintain HSPC function under homeostatic conditions.

Options: View larger image (or click on image) Download as PowerPoint
Endothelial-supplied jagged-2 is not required to maintain HSPC function ...
(A–D) The total number of BMMNCs (A) and the WBC count (C) were quantified in adult Jag2fl/fl or Jag2ECKO mice. Lineage distribution of hematopoietic cells within the BM (B) and peripheral blood (D) was quantified in Jag2fl/fl or Jag2ECKO mice. For A and B, n = 3. For C, the number of dots indicates the number of biological replicates. For D, n = 9 for Jag2fl/fl, n = 8 for Jag2ECKO. (E) Representative flow cytometric gating of phenotypic Lin–c-Kit+Sca1+CD150+CD48– long-term HSCs (LT-HSCs). (F) Quantification of the number of phenotypic LT-HSCs per million BMMNCs in the femur of Jag2fl/fl or Jag2ECKO (n = 8 for each group). (G) Schematic view of competitive repopulating assay. (H) The percentage of CD45.2+ hematopoietic cells in the peripheral blood of CD45.1+ mice at 15.5 weeks after transplantation (n = 6 CD45.1 recipients for Jag2fl/fl and n = 8 CD45.1 recipients for Jag2ECKO mice). (I) Representative flow cytometric plots showing the multilineage engraftment. The CD45.2+ cells were further gated to reveal donor-derived CD3+ T cells and CD19+ B cells. (J) Quantification of multilineage engraftment within the CD45.2+ cells. Error bars indicate the SEM. *P < 0.05 and **P < 0.01, by unpaired 2-tailed t test. The numbers in the flow plots represent percentages of cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts