Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A hidden residential cell in the lung
Marc E. Rothenberg
Marc E. Rothenberg
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3185-3187. https://doi.org/10.1172/JCI89768.
View: Text | PDF
Commentary

A hidden residential cell in the lung

  • Text
  • PDF
Abstract

Eosinophils are classically known as proinflammatory cells, as they are equipped with a variety of preformed cytotoxic mediators and have been shown to definitively contribute to asthma. The connection between eosinophils and asthma development has led to a new class of asthma therapeutics based on blocking eosinophils with humanized antibodies that neutralize IL-5, a potent eosinophil growth, activation, and survival factor. Yet, recent studies have led to an increasing appreciation that eosinophils have a variety of homeostatic functions, including immunomodulation. In this issue of the JCI, Mesnil et al. identify a notable population of lung-resident eosinophils and demonstrate that, compared with traditional eosinophils, these cells have distinct characteristics, including nuclear structure, surface markers, IL-5 independence, and immunoregulatory function that is capable of polarizing adaptive immune responses, at least in vitro. Thus, these results reinforce a key homeostatic role for this enigmatic cell population, particularly in residing and regulating immunity in the lung.

Authors

Marc E. Rothenberg

×

Full Text PDF | Download (560.10 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts