Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published September 1, 2016 Previous issue | Next issue

  • Volume 126, Issue 9
Go to section:
  • Conversations with Giants in Medicine
  • Obituary
  • Reviews
  • Commentaries
  • Research Articles
  • Corrigenda

On the cover: Transcription factor BCL6 is a druggable oncoprotein

On page 3351, Cardenas et al. report the development of a high-affinity small-molecule inhibitor for the transcription factor BCL6, which is an important driver of diffuse large B cell lymphoma. The cover image is a graphic depiction of FX1 (green) interacting with the BCL6 BTB domain lateral groove pocket and displacing its natural ligand. Image credit: Sam Shlomo Spaeth, CMI.
Conversations with Giants in Medicine
A conversation with Alexander Rudensky
Ushma S. Neill
Ushma S. Neill
Published September 1, 2016
Citation Information: J Clin Invest. 2016;126(9):3159-3160. https://doi.org/10.1172/JCI89940.
View: Text | PDF

A conversation with Alexander Rudensky

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
Obituary
A tribute to Philip W. Majerus
John D. York, P. Roy Vagelos
John D. York, P. Roy Vagelos
Published September 1, 2016
Citation Information: J Clin Invest. 2016;126(9):3161-3164. https://doi.org/10.1172/JCI89724.
View: Text | PDF

A tribute to Philip W. Majerus

  • Text
  • PDF
Abstract

Authors

John D. York, P. Roy Vagelos

×
Reviews
Kaposi sarcoma–associated herpesvirus: immunobiology, oncogenesis, and therapy
Dirk P. Dittmer, Blossom Damania
Dirk P. Dittmer, Blossom Damania
Published September 1, 2016
Citation Information: J Clin Invest. 2016;126(9):3165-3175. https://doi.org/10.1172/JCI84418.
View: Text | PDF

Kaposi sarcoma–associated herpesvirus: immunobiology, oncogenesis, and therapy

  • Text
  • PDF
Abstract

Kaposi sarcoma–associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.

Authors

Dirk P. Dittmer, Blossom Damania

×

Bioactive extracellular matrix fragments in lung health and disease
Amit Gaggar, Nathaniel Weathington
Amit Gaggar, Nathaniel Weathington
Published September 1, 2016
Citation Information: J Clin Invest. 2016;126(9):3176-3184. https://doi.org/10.1172/JCI83147.
View: Text | PDF

Bioactive extracellular matrix fragments in lung health and disease

  • Text
  • PDF
Abstract

The extracellular matrix (ECM) is the noncellular component critical in the maintenance of organ structure and the regulation of tissue development, organ structure, and cellular signaling. The ECM is a dynamic entity that undergoes continuous degradation and resynthesis. In addition to compromising structure, degradation of the ECM can liberate bioactive fragments that cause cellular activation and chemotaxis of a variety of cells. These fragments are termed matrikines, and their cellular activities are sentinel in the development and progression of tissue injury seen in chronic lung disease. Here, we discuss the matrikines that are known to be active in lung biology and their roles in lung disease. We also consider the use of matrikines as disease markers and potential therapeutic targets in lung disease.

Authors

Amit Gaggar, Nathaniel Weathington

×
Commentaries
A hidden residential cell in the lung
Marc E. Rothenberg
Marc E. Rothenberg
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3185-3187. https://doi.org/10.1172/JCI89768.
View: Text | PDF

A hidden residential cell in the lung

  • Text
  • PDF
Abstract

Eosinophils are classically known as proinflammatory cells, as they are equipped with a variety of preformed cytotoxic mediators and have been shown to definitively contribute to asthma. The connection between eosinophils and asthma development has led to a new class of asthma therapeutics based on blocking eosinophils with humanized antibodies that neutralize IL-5, a potent eosinophil growth, activation, and survival factor. Yet, recent studies have led to an increasing appreciation that eosinophils have a variety of homeostatic functions, including immunomodulation. In this issue of the JCI, Mesnil et al. identify a notable population of lung-resident eosinophils and demonstrate that, compared with traditional eosinophils, these cells have distinct characteristics, including nuclear structure, surface markers, IL-5 independence, and immunoregulatory function that is capable of polarizing adaptive immune responses, at least in vitro. Thus, these results reinforce a key homeostatic role for this enigmatic cell population, particularly in residing and regulating immunity in the lung.

Authors

Marc E. Rothenberg

×

Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling
Sarah B. Mueller, Christopher D. Kontos
Sarah B. Mueller, Christopher D. Kontos
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3188-3191. https://doi.org/10.1172/JCI89963.
View: Text | PDF

Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling

  • Text
  • PDF
Abstract

Angiopoietin-1/Tie2 (ANG1/Tie2) signaling is well documented as regulating angiogenesis and vessel maturation. This pathway is complicated by involvement of the orphan receptor Tie1, which has been implicated as both a positive and negative regulator of ANG1/Tie2 signaling, and ANG2, which can serve as both a Tie2 agonist and antagonist, depending on the context. Two papers in this issue of the JCI provide new insight into this complicated pathway. Korhonen et al. reveal that Tie1 acts to modulate the effects of ANG1 and ANG2 on Tie2 in vitro and in vivo. Kim et al. demonstrate that ANG2 acts as a Tie2 agonist in non-pathological conditions, whereas in the setting of inflammation, ANG2 functions as a Tie2 antagonist and promotes vascular dysfunction. Both studies indicate that inflammation promotes cleavage of the ectodomain of Tie1 and that this cleavage event corresponds with the switch of ANG2 from a Tie2 agonist to an antagonist. The results of these studies lay the groundwork for future strategies to therapeutically exploit this pathway in diseases characterized by adverse vascular remodeling and increased permeability.

Authors

Sarah B. Mueller, Christopher D. Kontos

×
Research Articles
A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution
Adriano Maida, … , Stephan Herzig, Adam J. Rose
Adriano Maida, … , Stephan Herzig, Adam J. Rose
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):e85946. https://doi.org/10.1172/JCI85946.
View: Text | PDF

A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

  • Text
  • PDF
Abstract

Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response–driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency–induced liver NUPR1/FGF21 axis.

Authors

Adriano Maida, Annika Zota, Kim A. Sjøberg, Jonas Schumacher, Tjeerd P. Sijmonsma, Anja Pfenninger, Marie M. Christensen, Thomas Gantert, Jessica Fuhrmeister, Ulrike Rothermel, Dieter Schmoll, Mathias Heikenwälder, Juan L. Iovanna, Kerstin Stemmer, Bente Kiens, Stephan Herzig, Adam J. Rose

×

Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity
Jing Cui, … , Tian Xu, Xiaohui Wu
Jing Cui, … , Tian Xu, Xiaohui Wu
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3192-3206. https://doi.org/10.1172/JCI85676.
View: Text | PDF

Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity

  • Text
  • PDF
Abstract

A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.

Authors

Jing Cui, Yi Ding, Shu Chen, Xiaoqiang Zhu, Yichen Wu, Mingliang Zhang, Yaxin Zhao, Tong-Ruei R. Li, Ling V. Sun, Shimin Zhao, Yuan Zhuang, Weiping Jia, Lei Xue, Min Han, Tian Xu, Xiaohui Wu

×

Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension
Christophe Guignabert, … , David Montani, Marc Humbert
Christophe Guignabert, … , David Montani, Marc Humbert
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3207-3218. https://doi.org/10.1172/JCI86249.
View: Text | PDF

Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension

  • Text
  • PDF
Abstract

Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that chronic dasatinib therapy causes pulmonary endothelial damage in humans and rodents. We found that dasatinib treatment attenuated hypoxic pulmonary vasoconstriction responses and increased susceptibility to experimental pulmonary hypertension (PH) in rats, but these effects were absent in rats treated with imatinib, another BCR-ABL tyrosine kinase inhibitor. Furthermore, dasatinib treatment induced pulmonary endothelial cell apoptosis in a dose-dependent manner, while imatinib did not. Dasatinib treatment mediated endothelial cell dysfunction via increased production of ROS that was independent of Src family kinases. Consistent with these findings, we observed elevations in markers of endothelial dysfunction and vascular damage in the serum of CML patients who were treated with dasatinib, compared with CML patients treated with imatinib. Taken together, our findings indicate that dasatinib causes pulmonary vascular damage, induction of ER stress, and mitochondrial ROS production, which leads to increased susceptibility to PH development.

Authors

Christophe Guignabert, Carole Phan, Andrei Seferian, Alice Huertas, Ly Tu, Raphaël Thuillet, Caroline Sattler, Morane Le Hiress, Yuichi Tamura, Etienne-Marie Jutant, Marie-Camille Chaumais, Stéphane Bouchet, Benjamin Manéglier, Mathieu Molimard, Philippe Rousselot, Olivier Sitbon, Gérald Simonneau, David Montani, Marc Humbert

×

ZEB1 drives epithelial-to-mesenchymal transition in lung cancer
Jill E. Larsen, … , Nicholas K. Hayward, John D. Minna
Jill E. Larsen, … , Nicholas K. Hayward, John D. Minna
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3219-3235. https://doi.org/10.1172/JCI76725.
View: Text | PDF

ZEB1 drives epithelial-to-mesenchymal transition in lung cancer

  • Text
  • PDF
Abstract

Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β– and MYC-induced EMT required ZEB1, but engaged distinct TGF-β–dependent and vitamin D receptor–dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non–small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.

Authors

Jill E. Larsen, Vaishnavi Nathan, Jihan K. Osborne, Rebecca K. Farrow, Dhruba Deb, James P. Sullivan, Patrick D. Dospoy, Alexander Augustyn, Suzie K. Hight, Mitsuo Sato, Luc Girard, Carmen Behrens, Ignacio I. Wistuba, Adi F. Gazdar, Nicholas K. Hayward, John D. Minna

×

Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis
Hsin-Yuan Cheng, … , Mary Sorci-Thomas, Catherine C. Hedrick
Hsin-Yuan Cheng, … , Mary Sorci-Thomas, Catherine C. Hedrick
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3236-3246. https://doi.org/10.1172/JCI83136.
View: Text | PDF

Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis

  • Text
  • PDF
Abstract

ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol accumulation and alters T cell homeostasis, which may contribute to progression of atherosclerosis. Here, we investigated how the selective loss of ABCG1 in T cells impacts atherosclerosis in LDL receptor–deficient (LDLR-deficient) mice, a model of the disease. In LDLR-deficient mice fed a high-cholesterol diet, T cell–specific ABCG1 deficiency protected against atherosclerotic lesions. Furthermore, T cell–specific ABCG1 deficiency led to a 30% increase in Treg percentages in aorta and aorta-draining lymph nodes (LNs) of these mice compared with animals with only LDLR deficiency. When Abcg1 was selectively deleted in Tregs of LDLR-deficient mice, we observed a 30% increase in Treg percentages in aorta and aorta-draining LNs and reduced atherosclerosis. In the absence of ABCG1, intracellular cholesterol accumulation led to downregulation of the mTOR pathway, which increased the differentiation of naive CD4 T cells into Tregs. The increase in Tregs resulted in reduced T cell activation and increased IL-10 production by T cells. Last, we found that higher ABCG1 expression in Tregs was associated with a higher frequency of these cells in human blood samples. Our study indicates that ABCG1 regulates T cell differentiation into Tregs, highlighting a pathway by which cholesterol accumulation can influence T cell homeostasis in atherosclerosis.

Authors

Hsin-Yuan Cheng, Dalia E. Gaddis, Runpei Wu, Chantel McSkimming, LaTeira D. Haynes, Angela M. Taylor, Coleen A. McNamara, Mary Sorci-Thomas, Catherine C. Hedrick

×

BRPF1 is essential for development of fetal hematopoietic stem cells
Linya You, … , Edwin Wang, Xiang-Jiao Yang
Linya You, … , Edwin Wang, Xiang-Jiao Yang
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3247-3262. https://doi.org/10.1172/JCI80711.
View: Text | PDF

BRPF1 is essential for development of fetal hematopoietic stem cells

  • Text
  • PDF
Abstract

Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger–containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny.

Authors

Linya You, Lin Li, Jinfeng Zou, Kezhi Yan, Jad Belle, Anastasia Nijnik, Edwin Wang, Xiang-Jiao Yang

×

Lung-resident eosinophils represent a distinct regulatory eosinophil subset
Claire Mesnil, … , Thomas Marichal, Fabrice Bureau
Claire Mesnil, … , Thomas Marichal, Fabrice Bureau
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3279-3295. https://doi.org/10.1172/JCI85664.
View: Text | PDF

Lung-resident eosinophils represent a distinct regulatory eosinophil subset

  • Text
  • PDF
Abstract

Increases in eosinophil numbers are associated with infection and allergic diseases, including asthma, but there is also evidence that eosinophils contribute to homeostatic immune processes. In mice, the normal lung contains resident eosinophils (rEos), but their function has not been characterized. Here, we have reported that steady-state pulmonary rEos are IL-5–independent parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped nucleus. During house dust mite–induced airway allergy, rEos features remained unchanged, and rEos were accompanied by recruited inflammatory eosinophils (iEos), which were defined as IL-5–dependent peribronchial Siglec-FhiCD62L–CD101hi cells with a segmented nucleus. Gene expression analyses revealed a more regulatory profile for rEos than for iEos, and correspondingly, mice lacking lung rEos showed an increase in Th2 cell responses to inhaled allergens. Such elevation of Th2 responses was linked to the ability of rEos, but not iEos, to inhibit the maturation, and therefore the pro-Th2 function, of allergen-loaded DCs. Finally, we determined that the parenchymal rEos found in nonasthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) were phenotypically distinct from the iEos isolated from the sputa of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi cells), suggesting that our findings in mice are relevant to humans. In conclusion, our data define lung rEos as a distinct eosinophil subset with key homeostatic functions.

Authors

Claire Mesnil, Stéfanie Raulier, Geneviève Paulissen, Xue Xiao, Mark A. Birrell, Dimitri Pirottin, Thibaut Janss, Philipp Starkl, Eve Ramery, Monique Henket, Florence N. Schleich, Marc Radermecker, Kris Thielemans, Laurent Gillet, Marc Thiry, Maria G. Belvisi, Renaud Louis, Christophe Desmet, Thomas Marichal, Fabrice Bureau

×

EGFR regulates macrophage activation and function in bacterial infection
Dana M. Hardbower, … , M. Blanca Piazuelo, Keith T. Wilson
Dana M. Hardbower, … , M. Blanca Piazuelo, Keith T. Wilson
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3296-3312. https://doi.org/10.1172/JCI83585.
View: Text | PDF

EGFR regulates macrophage activation and function in bacterial infection

  • Text
  • PDF
Abstract

EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

Authors

Dana M. Hardbower, Kshipra Singh, Mohammad Asim, Thomas G. Verriere, Danyvid Olivares-Villagómez, Daniel P. Barry, Margaret M. Allaman, M. Kay Washington, Richard M. Peek Jr., M. Blanca Piazuelo, Keith T. Wilson

×

Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension
Thomas Bertero, … , Joshua Fessel, Stephen Y. Chan
Thomas Bertero, … , Joshua Fessel, Stephen Y. Chan
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3313-3335. https://doi.org/10.1172/JCI86387.
View: Text | PDF

Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension

  • Text
  • PDF
Abstract

Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus–infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ–GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.

Authors

Thomas Bertero, William M. Oldham, Katherine A. Cottrill, Sabrina Pisano, Rebecca R. Vanderpool, Qiujun Yu, Jingsi Zhao, Yiyin Tai, Ying Tang, Ying-Yi Zhang, Sofiya Rehman, Masataka Sugahara, Zhi Qi, John Gorcsan III, Sara O. Vargas, Rajan Saggar, Rajeev Saggar, W. Dean Wallace, David J. Ross, Kathleen J. Haley, Aaron B. Waxman, Victoria N. Parikh, Teresa De Marco, Priscilla Y. Hsue, Alison Morris, Marc A. Simon, Karen A. Norris, Cedric Gaggioli, Joseph Loscalzo, Joshua Fessel, Stephen Y. Chan

×

Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury
Christopher E. Pedigo, … , Sandra Merscher, Alessia Fornoni
Christopher E. Pedigo, … , Sandra Merscher, Alessia Fornoni
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3336-3350. https://doi.org/10.1172/JCI85939.
View: Text | PDF

Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury

  • Text
  • PDF
Abstract

High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1–mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol–dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol–dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels.

Authors

Christopher E. Pedigo, Gloria Michelle Ducasa, Farah Leclercq, Alexis Sloan, Alla Mitrofanova, Tahreem Hashmi, Judith Molina-David, Mengyuan Ge, Mariann I. Lassenius, Carol Forsblom, Markku Lehto, Per-Henrik Groop, Matthias Kretzler, Sean Eddy, Sebastian Martini, Heather Reich, Patricia Wahl, GianMarco Ghiggeri, Christian Faul, George W. Burke III, Oliver Kretz, Tobias B. Huber, Armando J. Mendez, Sandra Merscher, Alessia Fornoni

×

Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma
Mariano G. Cardenas, … , Alexander D. MacKerell Jr., Ari M. Melnick
Mariano G. Cardenas, … , Alexander D. MacKerell Jr., Ari M. Melnick
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3351-3362. https://doi.org/10.1172/JCI85795.
View: Text | PDF

Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma

  • Text
  • PDF
Abstract

Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands.

Authors

Mariano G. Cardenas, Wenbo Yu, Wendy Beguelin, Matthew R. Teater, Huimin Geng, Rebecca L. Goldstein, Erin Oswald, Katerina Hatzi, Shao-Ning Yang, Joanna Cohen, Rita Shaknovich, Kenno Vanommeslaeghe, Huimin Cheng, Dongdong Liang, Hyo Je Cho, Joshua Abbott, Wayne Tam, Wei Du, John P. Leonard, Olivier Elemento, Leandro Cerchietti, Tomasz Cierpicki, Fengtian Xue, Alexander D. MacKerell Jr., Ari M. Melnick

×

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells
Partow Kebriaei, … , Richard E. Champlin, Laurence J.N. Cooper
Partow Kebriaei, … , Richard E. Champlin, Laurence J.N. Cooper
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3363-3376. https://doi.org/10.1172/JCI86721.
View: Text | PDF Clinical Research and Public Health

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

  • Text
  • PDF
Abstract

BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR.

METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19).

RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients.

CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach.

TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036.

FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.

Authors

Partow Kebriaei, Harjeet Singh, M. Helen Huls, Matthew J. Figliola, Roland Bassett, Simon Olivares, Bipulendu Jena, Margaret J. Dawson, Pappanaicken R. Kumaresan, Shihuang Su, Sourindra Maiti, Jianliang Dai, Branden Moriarity, Marie-Andrée Forget, Vladimir Senyukov, Aaron Orozco, Tingting Liu, Jessica McCarty, Rineka N. Jackson, Judy S. Moyes, Gabriela Rondon, Muzaffar Qazilbash, Stefan Ciurea, Amin Alousi, Yago Nieto, Katy Rezvani, David Marin, Uday Popat, Chitra Hosing, Elizabeth J. Shpall, Hagop Kantarjian, Michael Keating, William Wierda, Kim Anh Do, David A. Largaespada, Dean A. Lee, Perry B. Hackett, Richard E. Champlin, Laurence J.N. Cooper

×

Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease
Baris Boyraz, … , Patrick Cahan, Suneet Agarwal
Baris Boyraz, … , Patrick Cahan, Suneet Agarwal
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3377-3382. https://doi.org/10.1172/JCI87547.
View: Text | PDF Brief Report

Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease

  • Text
  • PDF
Abstract

The telomerase RNA component (TERC) is a critical determinant of cellular self-renewal. Poly(A)-specific ribonuclease (PARN) is required for posttranscriptional maturation of TERC. PARN mutations lead to incomplete 3′ end processing and increased destruction of nascent TERC RNA transcripts, resulting in telomerase deficiency and telomere diseases. Here, we determined that overexpression of TERC increased telomere length in PARN-deficient cells and hypothesized that decreasing posttranscriptional 3′ oligo-adenylation of TERC would counteract the deleterious effects of PARN mutations. Inhibition of the noncanonical poly(A) polymerase PAP-associated domain–containing 5 (PAPD5) increased TERC levels in PARN-mutant patient cells. PAPD5 inhibition was also associated with increases in TERC stability, telomerase activity, and telomere elongation. Our results demonstrate that manipulating posttranscriptional regulatory pathways may be a potential strategy to reverse the molecular hallmarks of telomere disease.

Authors

Baris Boyraz, Diane H. Moon, Matthew Segal, Maud Z. Muosieyiri, Asli Aykanat, Albert K. Tai, Patrick Cahan, Suneet Agarwal

×

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas
Davide Calebiro, … , Luca Persani, Ralf Paschke
Davide Calebiro, … , Luca Persani, Ralf Paschke
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3383-3388. https://doi.org/10.1172/JCI84894.
View: Text | PDF Concise Communication

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas

  • Text
  • PDF
Abstract

Autonomous thyroid adenomas (ATAs) are a frequent cause of hyperthyroidism. Mutations in the genes encoding the TSH receptor (TSHR) or the Gs protein α subunit (GNAS) are found in approximately 70% of ATAs. The involvement of other genes and the pathogenesis of the remaining cases are presently unknown. Here, we performed whole-exome sequencing in 19 ATAs that were paired with normal DNA samples and identified a recurrent hot-spot mutation (c.1712A>G; p.Gln571Arg) in the enhancer of zeste homolog 1 (EZH1) gene, which codes for a catalytic subunit of the polycomb complex. Targeted screening in an independent cohort confirmed that this mutation occurs with high frequency (27%) in ATAs. EZH1 mutations were strongly associated with known (TSHR, GNAS) or presumed (adenylate cyclase 9 [ADCY9]) alterations in cAMP pathway genes. Furthermore, functional studies revealed that the p.Gln571Arg EZH1 mutation caused increased histone H3 trimethylation and increased proliferation of thyroid cells. In summary, this study revealed that a hot-spot mutation in EZH1 is the second most frequent genetic alteration in ATAs. The association between EZH1 and TSHR mutations suggests a 2-hit model for the pathogenesis of these tumors, whereby constitutive activation of the cAMP pathway and EZH1 mutations cooperate to induce the hyperproliferation of thyroid cells.

Authors

Davide Calebiro, Elisa S. Grassi, Markus Eszlinger, Cristina L. Ronchi, Amod Godbole, Kerstin Bathon, Fabiana Guizzardi, Tiziana de Filippis, Knut Krohn, Holger Jaeschke, Thomas Schwarzmayr, Rifat Bircan, Hulya Iliksu Gozu, Seda Sancak, Marek Niedziela, Tim M. Strom, Martin Fassnacht, Luca Persani, Ralf Paschke

×

Lymphatic vessels regulate immune microenvironments in human and murine melanoma
Amanda W. Lund, … , Helge Wiig, Melody A. Swartz
Amanda W. Lund, … , Helge Wiig, Melody A. Swartz
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3389-3402. https://doi.org/10.1172/JCI79434.
View: Text | PDF

Lymphatic vessels regulate immune microenvironments in human and murine melanoma

  • Text
  • PDF
Abstract

Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment.

Authors

Amanda W. Lund, Marek Wagner, Manuel Fankhauser, Eli S. Steinskog, Maria A. Broggi, Stefani Spranger, Thomas F. Gajewski, Kari Alitalo, Hans P. Eikesdal, Helge Wiig, Melody A. Swartz

×

Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling
Shouji Matsushima, … , Hiroyuki Tsutsui, Junichi Sadoshima
Shouji Matsushima, … , Hiroyuki Tsutsui, Junichi Sadoshima
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3403-3416. https://doi.org/10.1172/JCI85624.
View: Text | PDF

Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling

  • Text
  • PDF
Abstract

NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2– production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.

Authors

Shouji Matsushima, Junya Kuroda, Peiyong Zhai, Tong Liu, Shohei Ikeda, Narayani Nagarajan, Shin-ichi Oka, Takashi Yokota, Shintaro Kinugawa, Chiao-Po Hsu, Hong Li, Hiroyuki Tsutsui, Junichi Sadoshima

×

Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing
Takuro Miyazaki, … , Hiroki Kurihara, Akira Miyazaki
Takuro Miyazaki, … , Hiroki Kurihara, Akira Miyazaki
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3417-3432. https://doi.org/10.1172/JCI85880.
View: Text | PDF

Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing

  • Text
  • PDF
Abstract

Macrophages contribute to the development of atherosclerosis through pinocytotic deposition of native LDL–derived cholesterol in macrophages in the vascular wall. Inhibiting macrophage-mediated lipid deposition may have protective effects in atheroprone vasculature, and identifying mechanisms that potentiate this process may inform potential therapeutic interventions for atherosclerosis. Here, we report that dysregulation of exon junction complex–driven (EJC-driven) mRNA splicing confers hyperpinocytosis to macrophages during atherogenesis. Mechanistically, we determined that inflammatory cytokines induce an unconventional nonproteolytic calpain, calpain-6 (CAPN6), which associates with the essential EJC-loading factor CWC22 in the cytoplasm. This association disturbs the nuclear localization of CWC22, thereby suppressing the splicing of target genes, including those related to Rac1 signaling. CAPN6 deficiency in LDL receptor–deficient mice restored CWC22/EJC/Rac1 signaling, reduced pinocytotic deposition of native LDL in macrophages, and attenuated macrophage recruitment into the lesions, generating an atheroprotective phenotype in the aorta. In macrophages, the induction of CAPN6 in the atheroma interior limited macrophage movements, resulting in a decline in cell clearance from the lesions. Consistent with this finding, we observed that myeloid CAPN6 contributed to atherogenesis in a murine model of bone marrow transplantation. Furthermore, macrophages from advanced human atheromas exhibited increased CAPN6 induction and impaired CWC22 nuclear localization. Together, these results indicate that CAPN6 promotes atherogenicity in inflamed macrophages by disturbing CWC22/EJC systems.

Authors

Takuro Miyazaki, Kazuo Tonami, Shoji Hata, Toshihiro Aiuchi, Koji Ohnishi, Xiao-Feng Lei, Joo-ri Kim-Kaneyama, Motohiro Takeya, Hiroyuki Itabe, Hiroyuki Sorimachi, Hiroki Kurihara, Akira Miyazaki

×

Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis
Brian T. O’Neill, … , K. Sreekumaran Nair, C. Ronald Kahn
Brian T. O’Neill, … , K. Sreekumaran Nair, C. Ronald Kahn
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3433-3446. https://doi.org/10.1172/JCI86522.
View: Text | PDF

Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis

  • Text
  • PDF
Abstract

Diabetes strongly impacts protein metabolism, particularly in skeletal muscle. Insulin and IGF-1 enhance muscle protein synthesis through their receptors, but the relative roles of each in muscle proteostasis have not been fully elucidated. Using mice with muscle-specific deletion of the insulin receptor (M-IR–/– mice), the IGF-1 receptor (M-IGF1R–/– mice), or both (MIGIRKO mice), we assessed the relative contributions of IR and IGF1R signaling to muscle proteostasis. In differentiated muscle, IR expression predominated over IGF1R expression, and correspondingly, M-IR–/– mice displayed a moderate reduction in muscle mass whereas M-IGF1R–/– mice did not. However, these receptors serve complementary roles, such that double-knockout MIGIRKO mice displayed a marked reduction in muscle mass that was linked to increases in proteasomal and autophagy-lysosomal degradation, accompanied by a high-protein-turnover state. Combined muscle-specific deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO mice reversed increased autophagy and completely rescued muscle mass without changing proteasomal activity. These data indicate that signaling via IR is more important than IGF1R in controlling proteostasis in differentiated muscle. Nonetheless, the overlap of IR and IGF1R signaling is critical to the regulation of muscle protein turnover, and this regulation depends on suppression of FoxO-regulated, autophagy-mediated protein degradation.

Authors

Brian T. O’Neill, Kevin Y. Lee, Katherine Klaus, Samir Softic, Megan T. Krumpoch, Joachim Fentz, Kristin I. Stanford, Matthew M. Robinson, Weikang Cai, Andre Kleinridders, Renata O. Pereira, Michael F. Hirshman, E. Dale Abel, Domenico Accili, Laurie J. Goodyear, K. Sreekumaran Nair, C. Ronald Kahn

×

Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma
Adil I. Daud, … , Matthew F. Krummel, Michael D. Rosenblum
Adil I. Daud, … , Matthew F. Krummel, Michael D. Rosenblum
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3447-3452. https://doi.org/10.1172/JCI87324.
View: Text | PDF Concise Communication

Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma

  • Text
  • PDF
Abstract

BACKGROUND. Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options.

METHODS. We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype.

RESULTS. Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte–associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti–PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs.

CONCLUSIONS. Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti–PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition.

FUNDING. This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.

Authors

Adil I. Daud, Kimberly Loo, Mariela L. Pauli, Robert Sanchez-Rodriguez, Priscila Munoz Sandoval, Keyon Taravati, Katy Tsai, Adi Nosrati, Lorenzo Nardo, Michael D. Alvarado, Alain P. Algazi, Miguel H. Pampaloni, Iryna V. Lobach, Jimmy Hwang, Robert H. Pierce, Iris K. Gratz, Matthew F. Krummel, Michael D. Rosenblum

×

Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation
Adrian Achuthan, … , Stephen J. Turner, John A. Hamilton
Adrian Achuthan, … , Stephen J. Turner, John A. Hamilton
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3453-3466. https://doi.org/10.1172/JCI87828.
View: Text | PDF

Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation

  • Text
  • PDF
Abstract

Data from preclinical and clinical studies have demonstrated that granulocyte macrophage colony-stimulating factor (GM-CSF) can function as a key proinflammatory cytokine. However, therapies that directly target GM-CSF function could lead to undesirable side effects, creating a need to delineate downstream pathways and mediators. In this work, we provide evidence that GM-CSF drives CCL17 production by acting through an IFN regulatory factor 4–dependent (IRF4-dependent) pathway in human monocytes, murine macrophages, and mice in vivo. In murine models of arthritis and pain, IRF4 regulated the formation of CCL17, which mediated the proinflammatory and algesic actions of GM-CSF. Mechanistically, GM-CSF upregulated IRF4 expression by enhancing JMJD3 demethylase activity. We also determined that CCL17 has chemokine-independent functions in inflammatory arthritis and pain. These findings indicate that GM-CSF can mediate inflammation and pain by regulating IRF4-induced CCL17 production, providing insights into a pathway with potential therapeutic avenues for the treatment of inflammatory diseases and their associated pain.

Authors

Adrian Achuthan, Andrew D. Cook, Ming-Chin Lee, Reem Saleh, Hsu-Wei Khiew, Melody W.N. Chang, Cynthia Louis, Andrew J. Fleetwood, Derek C. Lacey, Anne D. Christensen, Ashlee T. Frye, Pui Yeng Lam, Hitoshi Kusano, Koji Nomura, Nancy Steiner, Irmgard Förster, Stephen L. Nutt, Moshe Olshansky, Stephen J. Turner, John A. Hamilton

×

β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals
Bharath K. Mani, … , Chelsea Hepler, Jeffrey M. Zigman
Bharath K. Mani, … , Chelsea Hepler, Jeffrey M. Zigman
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3467-3478. https://doi.org/10.1172/JCI86270.
View: Text | PDF

β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

  • Text
  • PDF
Abstract

Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children.

Authors

Bharath K. Mani, Sherri Osborne-Lawrence, Prasanna Vijayaraghavan, Chelsea Hepler, Jeffrey M. Zigman

×

BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models
Yuki Kagoya, … , Cheryl H. Arrowsmith, Naoto Hirano
Yuki Kagoya, … , Cheryl H. Arrowsmith, Naoto Hirano
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3479-3494. https://doi.org/10.1172/JCI86437.
View: Text | PDF

BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models

  • Text
  • PDF
Abstract

Adoptive immunotherapy is a potentially curative therapeutic approach for patients with advanced cancer. However, the in vitro expansion of antitumor T cells prior to infusion inevitably incurs differentiation towards effector T cells and impairs persistence following adoptive transfer. Epigenetic profiles regulate gene expression of key transcription factors over the course of immune cell differentiation, proliferation, and function. Using comprehensive screening of chemical probes with defined epigenetic targets, we found that JQ1, an inhibitor of bromodomain and extra-terminal motif (BET) proteins, maintained CD8+ T cells with functional properties of stem cell–like and central memory T cells. Mechanistically, the BET protein BRD4 directly regulated expression of the transcription factor BATF in CD8+ T cells, which was associated with differentiation of T cells into an effector memory phenotype. JQ1-treated T cells showed enhanced persistence and antitumor effects in murine T cell receptor and chimeric antigen receptor gene therapy models. Furthermore, we found that histone acetyltransferase p300 supported the recruitment of BRD4 to the BATF promoter region, and p300 inhibition similarly augmented antitumor effects of the adoptively transferred T cells. These results demonstrate that targeting the BRD4-p300 signaling cascade supports the generation of superior antitumor T cell grafts for adoptive immunotherapy.

Authors

Yuki Kagoya, Munehide Nakatsugawa, Yuki Yamashita, Toshiki Ochi, Tingxi Guo, Mark Anczurowski, Kayoko Saso, Marcus O. Butler, Cheryl H. Arrowsmith, Naoto Hirano

×

Tie1 controls angiopoietin function in vascular remodeling and inflammation
Emilia A. Korhonen, … , Kari Alitalo, Pipsa Saharinen
Emilia A. Korhonen, … , Kari Alitalo, Pipsa Saharinen
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3495-3510. https://doi.org/10.1172/JCI84923.
View: Text | PDF

Tie1 controls angiopoietin function in vascular remodeling and inflammation

  • Text
  • PDF
Abstract

The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin–dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability.

Authors

Emilia A. Korhonen, Anita Lampinen, Hemant Giri, Andrey Anisimov, Minah Kim, Breanna Allen, Shentong Fang, Gabriela D’Amico, Tuomas J. Sipilä, Marja Lohela, Tomas Strandin, Antti Vaheri, Seppo Ylä-Herttuala, Gou Young Koh, Donald M. McDonald, Kari Alitalo, Pipsa Saharinen

×

Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation
Minah Kim, … , Gavin Thurston, Donald M. McDonald
Minah Kim, … , Gavin Thurston, Donald M. McDonald
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3511-3525. https://doi.org/10.1172/JCI84871.
View: Text | PDF

Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation

  • Text
  • PDF
Abstract

Angiopoietin-2 (ANG2) regulates blood vessel remodeling in many pathological conditions through differential effects on Tie2 signaling. While ANG2 competes with ANG1 to inhibit Tie2, it can paradoxically also promote Tie2 phosphorylation (p-Tie2). A related paradox is that both inactivation and overactivation of Tie2 can result in vascular remodeling. Here, we reconciled these opposing actions of ANG2 by manipulating conditions that govern its actions in the vasculature. ANG2 drove vascular remodeling during Mycoplasma pulmonis infection by acting as a Tie2 antagonist, which led to p-Tie2 suppression, forkhead box O1 (FOXO1) activation, increased ANG2 expression, and vessel leakiness. These changes were exaggerated by anti-Tie2 antibody, inhibition of PI3K signaling, or ANG2 overexpression and were reduced by anti-ANG2 antibody or exogenous ANG1. In contrast, under pathogen-free conditions, ANG2 drove vascular remodeling by acting as an agonist, promoting high p-Tie2, low FOXO1 activation, and no leakage. Tie1 activation was strong under pathogen-free conditions, but infection or TNF-α led to Tie1 inactivation by ectodomain cleavage and promoted the Tie2 antagonist action of ANG2. Together, these data indicate that ANG2 activation of Tie2 supports stable enlargement of normal nonleaky vessels, but reduction of Tie1 in inflammation leads to ANG2 antagonism of Tie2 and initiates a positive feedback loop wherein FOXO1-driven ANG2 expression promotes vascular remodeling and leakage.

Authors

Minah Kim, Breanna Allen, Emilia A. Korhonen, Maximilian Nitschké, Hee Won Yang, Peter Baluk, Pipsa Saharinen, Kari Alitalo, Christopher Daly, Gavin Thurston, Donald M. McDonald

×

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin
Jianing Xu, … , Emily H. Cheng, James J. Hsieh
Jianing Xu, … , Emily H. Cheng, James J. Hsieh
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3526-3540. https://doi.org/10.1172/JCI86120.
View: Text | PDF

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

  • Text
  • PDF
Abstract

Genomic studies have linked mTORC1 pathway–activating mutations with exceptional response to treatment with allosteric inhibitors of mTORC1 called rapalogs. Rapalogs are approved for selected cancer types, including kidney and breast cancers. Here, we used sequencing data from 22 human kidney cancer cases to identify the activating mechanisms conferred by mTOR mutations observed in human cancers and advance precision therapeutics. mTOR mutations that clustered in focal adhesion kinase targeting domain (FAT) and kinase domains enhanced mTORC1 kinase activity, decreased nutrient reliance, and increased cell size. We identified 3 distinct mechanisms of hyperactivation, including reduced binding to DEP domain–containing MTOR-interacting protein (DEPTOR), resistance to regulatory associated protein of mTOR–mediated (RAPTOR-mediated) suppression, and altered kinase kinetics. Of the 28 mTOR double mutants, activating mutations could be divided into 6 complementation groups, resulting in synergistic Rag- and Ras homolog enriched in brain–independent (RHEB-independent) mTORC1 activation. mTOR mutants were resistant to DNA damage–inducible transcript 1–mediated (REDD1-mediated) inhibition, confirming that activating mutations can bypass the negative feedback pathway formed between HIF1 and mTORC1 in the absence of von Hippel–Lindau (VHL) tumor suppressor expression. Moreover, VHL-deficient cells that expressed activating mTOR mutants grew tumors that were sensitive to rapamycin treatment. These data may explain the high incidence of mTOR mutations observed in clear cell kidney cancer, where VHL loss and HIF activation is pathognomonic. Our study provides mechanistic and therapeutic insights concerning mTOR mutations in human diseases.

Authors

Jianing Xu, Can G. Pham, Steven K. Albanese, Yiyu Dong, Toshinao Oyama, Chung-Han Lee, Vanessa Rodrik-Outmezguine, Zhan Yao, Song Han, David Chen, Daniel L. Parton, John D. Chodera, Neal Rosen, Emily H. Cheng, James J. Hsieh

×

A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease
Vivian Zhou, … , Daniel J. Cua, William R. Drobyski
Vivian Zhou, … , Daniel J. Cua, William R. Drobyski
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3541-3555. https://doi.org/10.1172/JCI80874.
View: Text | PDF

A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

  • Text
  • PDF
Abstract

Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers.

Authors

Vivian Zhou, Kimberle Agle, Xiao Chen, Amy Beres, Richard Komorowski, Ludovic Belle, Carolyn Taylor, Fenlu Zhu, Dipica Haribhai, Calvin B. Williams, James Verbsky, Wendy Blumenschein, Svetlana Sadekova, Eddie Bowman, Christie Ballantyne, Casey Weaver, David A. Serody, Benjamin Vincent, Jonathan Serody, Daniel J. Cua, William R. Drobyski

×

Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death
Robert Esterberg, … , Edwin W. Rubel, David W. Raible
Robert Esterberg, … , Edwin W. Rubel, David W. Raible
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3556-3566. https://doi.org/10.1172/JCI84939.
View: Text | PDF

Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death

  • Text
  • PDF
Abstract

Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure.

Authors

Robert Esterberg, Tor Linbo, Sarah B. Pickett, Patricia Wu, Henry C. Ou, Edwin W. Rubel, David W. Raible

×

MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling
Byungyong Ahn, … , Rick B. Vega, Daniel P. Kelly
Byungyong Ahn, … , Rick B. Vega, Daniel P. Kelly
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3567-3579. https://doi.org/10.1172/JCI87382.
View: Text | PDF

MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling

  • Text
  • PDF
Abstract

Intramuscular lipid accumulation is a common manifestation of chronic caloric excess and obesity that is strongly associated with insulin resistance. The mechanistic links between lipid accumulation in myocytes and insulin resistance are not completely understood. In this work, we used a high-throughput chemical biology screen to identify a small-molecule probe, SBI-477, that coordinately inhibited triacylglyceride (TAG) synthesis and enhanced basal glucose uptake in human skeletal myocytes. We then determined that SBI-477 stimulated insulin signaling by deactivating the transcription factor MondoA, leading to reduced expression of the insulin pathway suppressors thioredoxin-interacting protein (TXNIP) and arrestin domain–containing 4 (ARRDC4). Depleting MondoA in myocytes reproduced the effects of SBI-477 on glucose uptake and myocyte lipid accumulation. Furthermore, an analog of SBI-477 suppressed TXNIP expression, reduced muscle and liver TAG levels, enhanced insulin signaling, and improved glucose tolerance in mice fed a high-fat diet. These results identify a key role for MondoA-directed programs in the coordinated control of myocyte lipid balance and insulin signaling and suggest that this pathway may have potential as a therapeutic target for insulin resistance and lipotoxicity.

Authors

Byungyong Ahn, Mangala M. Soundarapandian, Hampton Sessions, Satyamaheshwar Peddibhotla, Gregory P. Roth, Jian-Liang Li, Eliot Sugarman, Ada Koo, Siobhan Malany, Miao Wang, Kyungmoo Yea, Jeanne Brooks, Teresa C. Leone, Xianlin Han, Rick B. Vega, Daniel P. Kelly

×

Biallelic inactivation of REV7 is associated with Fanconi anemia
Dominique Bluteau, … , Alan D. D’Andrea, Jean Soulier
Dominique Bluteau, … , Alan D. D’Andrea, Jean Soulier
Published August 8, 2016
Citation Information: J Clin Invest. 2016;126(9):3580-3584. https://doi.org/10.1172/JCI88010.
View: Text | PDF | Corrigendum Brief Report

Biallelic inactivation of REV7 is associated with Fanconi anemia

  • Text
  • PDF
Abstract

Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient’s cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.

Authors

Dominique Bluteau, Julien Masliah-Planchon, Connor Clairmont, Alix Rousseau, Raphael Ceccaldi, Catherine Dubois d’Enghien, Olivier Bluteau, Wendy Cuccuini, Stéphanie Gachet, Régis Peffault de Latour, Thierry Leblanc, Gérard Socié, André Baruchel, Dominique Stoppa-Lyonnet, Alan D. D’Andrea, Jean Soulier

×

Serine 421 regulates mutant huntingtin toxicity and clearance in mice
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3585-3597. https://doi.org/10.1172/JCI80339.
View: Text | PDF

Serine 421 regulates mutant huntingtin toxicity and clearance in mice

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.

Authors

Ian H. Kratter, Hengameh Zahed, Alice Lau, Andrey S. Tsvetkov, Aaron C. Daub, Kurt F. Weiberth, Xiaofeng Gu, Frédéric Saudou, Sandrine Humbert, X. William Yang, Alex Osmand, Joan S. Steffan, Eliezer Masliah, Steven Finkbeiner

×

Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease
Laetitia Koppe, … , Julien Ghislain, Vincent Poitout
Laetitia Koppe, … , Julien Ghislain, Vincent Poitout
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3598-3612. https://doi.org/10.1172/JCI86181.
View: Text | PDF

Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

  • Text
  • PDF
Abstract

Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis.

Authors

Laetitia Koppe, Elsa Nyam, Kevin Vivot, Jocelyn E. Manning Fox, Xiao-Qing Dai, Bich N. Nguyen, Dominique Trudel, Camille Attané, Valentine S. Moullé, Patrick E. MacDonald, Julien Ghislain, Vincent Poitout

×

PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models
Nesrin Sabha, … , Eva L. Feldman, James J. Dowling
Nesrin Sabha, … , Eva L. Feldman, James J. Dowling
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3613-3625. https://doi.org/10.1172/JCI86841.
View: Text | PDF

PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models

  • Text
  • PDF
Abstract

Myotubular myopathy (MTM) is a devastating pediatric neuromuscular disorder of phosphoinositide (PIP) metabolism resulting from mutations of the PIP phosphatase MTM1 for which there are no treatments. We have previously shown phosphatidylinositol-3-phosphate (PI3P) accumulation in animal models of MTM. Here, we tested the hypothesis that lowering PI3P levels may prevent or reverse the MTM disease process. To test this, we targeted class II and III PI3 kinases (PI3Ks) in an MTM1-deficient mouse model. Muscle-specific ablation of Pik3c2b, but not Pik3c3, resulted in complete prevention of the MTM phenotype, and postsymptomatic targeting promoted a striking rescue of disease. We confirmed this genetic interaction in zebrafish, and additionally showed that certain PI3K inhibitors prevented development of the zebrafish mtm phenotype. Finally, the PI3K inhibitor wortmannin improved motor function and prolonged lifespan of the Mtm1-deficient mice. In all, we have identified Pik3c2b as a genetic modifier of Mtm1 mutation and demonstrated that PIK3C2B inhibition is a potential treatment strategy for MTM. In addition, we set the groundwork for similar reciprocal inhibition approaches for treating other PIP metabolic disorders and highlight the importance of modifier gene pathways as therapeutic targets.

Authors

Nesrin Sabha, Jonathan R. Volpatti, Hernan Gonorazky, Aaron Reifler, Ann E. Davidson, Xingli Li, Nadine M. Eltayeb, Claudia Dall’Armi, Gilbert Di Paolo, Susan V. Brooks, Ana Buj-Bello, Eva L. Feldman, James J. Dowling

×
Corrigenda
Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity
David K. Cole, … , Pierre J. Rizkallah, Andrew K. Sewell
David K. Cole, … , Pierre J. Rizkallah, Andrew K. Sewell
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3626-3626. https://doi.org/10.1172/JCI89919.
View: Text | PDF | Amended Article

Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

  • Text
  • PDF
Abstract

Authors

David K. Cole, Anna M. Bulek, Garry Dolton, Andrea J. Schauenberg, Barbara Szomolay, William Rittase, Andrew Trimby, Prithiviraj Jothikumar, Anna Fuller, Ania Skowera, Jamie Rossjohn, Cheng Zhu, John J. Miles, Mark Peakman, Linda Wooldridge, Pierre J. Rizkallah, Andrew K. Sewell

×

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis
Ting Xie, … , Dianhua Jiang, Paul W. Noble
Ting Xie, … , Dianhua Jiang, Paul W. Noble
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3626-3626. https://doi.org/10.1172/JCI89968.
View: Text | PDF | Amended Article

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis

  • Text
  • PDF
Abstract

Authors

Ting Xie, Jiurong Liang, Ningshan Liu, Caijuan Huan, Yanli Zhang, Weijia Liu, Maya Kumar, Rui Xiao, Jeanine D’Armiento, Daniel Metzger, Pierre Chambon, Virginia E. Papaioannou, Barry R. Stripp, Dianhua Jiang, Paul W. Noble

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts