Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
A hidden residential cell in the lung
Marc E. Rothenberg
Marc E. Rothenberg
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3185-3187. https://doi.org/10.1172/JCI89768.
View: Text | PDF
Commentary

A hidden residential cell in the lung

  • Text
  • PDF
Abstract

Eosinophils are classically known as proinflammatory cells, as they are equipped with a variety of preformed cytotoxic mediators and have been shown to definitively contribute to asthma. The connection between eosinophils and asthma development has led to a new class of asthma therapeutics based on blocking eosinophils with humanized antibodies that neutralize IL-5, a potent eosinophil growth, activation, and survival factor. Yet, recent studies have led to an increasing appreciation that eosinophils have a variety of homeostatic functions, including immunomodulation. In this issue of the JCI, Mesnil et al. identify a notable population of lung-resident eosinophils and demonstrate that, compared with traditional eosinophils, these cells have distinct characteristics, including nuclear structure, surface markers, IL-5 independence, and immunoregulatory function that is capable of polarizing adaptive immune responses, at least in vitro. Thus, these results reinforce a key homeostatic role for this enigmatic cell population, particularly in residing and regulating immunity in the lung.

Authors

Marc E. Rothenberg

×

Figure 1

Schematic diagram of the homeostatic roles of eosinophils.

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of the homeostatic roles of eosinophils.
Eosinophils t...
Eosinophils transit through the blood stream and home into various tissues at baseline. This schematic focuses on three tissues — adipose, small intestine, and lung. In adipose tissue, eosinophils regulate glucose levels and metabolism via eosinophil-derived IL-4, which regulates macrophage polarization and subsequent generation of insulin-sensitizing agents. In the small intestine, eosinophils regulate secretory IgA, mucus production and microbiota composition. A study in this issue by Mesnil et al. (8) show that in the lung, there is a substantial population of rEos in the parenchyma. These eosinophils have a ringed nucleus and express differential levels of Siglec-F and CD62L compared with inflammatory eosinophils and also express cardinal eosinophil markers including CCR3 and CD123 (the IL-5 receptor). Lung rEos have putative immunosuppressive function. Please note that the data in this figure are mainly derived from murine studies.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts