Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations
Gregory M. Laird, … , Janet D. Siliciano, Robert F. Siliciano
Gregory M. Laird, … , Janet D. Siliciano, Robert F. Siliciano
Published March 30, 2015
Citation Information: J Clin Invest. 2015;125(5):1901-1912. https://doi.org/10.1172/JCI80142.
View: Text | PDF
Research Article AIDS/HIV

Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations

  • Text
  • PDF
Abstract

Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs.

Authors

Gregory M. Laird, C. Korin Bullen, Daniel I.S. Rosenbloom, Alyssa R. Martin, Alison L. Hill, Christine M. Durand, Janet D. Siliciano, Robert F. Siliciano

×

Figure 3

Lower doses of bryostatin-1 synergize with romidepsin to reverse latency.

Options: View larger image (or click on image) Download as PowerPoint
Lower doses of bryostatin-1 synergize with romidepsin to reverse latency...
(A) Intracellular HIV-1 mRNA levels in rCD4s, obtained from infected individuals and treated ex vivo with bryostatin-1 (1 nM or 10 nM) alone or in combination with romidepsin, presented as fold induction relative to DMSO control. Statistical significance was calculated from the HIV-1 mRNA copy number values using a ratio paired t test compared with the DMSO control. **P < 0.005; ***P < 0.0005. (B) Calculation of synergy for bryostatin-1 (1 nM) and romidepsin using the Bliss independence model. Data are presented as the difference between the observed and predicted fractional response relative to PMA/I (fa). See Methods for more details. Statistical significance for the experimental fa was calculated using paired t test compared with the predicted fa for each combination. *P < 0.05. rCD4s from 4 HIV-1–infected individuals were tested per condition.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts