Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected
Douglas Marvel, Dmitry I. Gabrilovich
Douglas Marvel, Dmitry I. Gabrilovich
Published July 13, 2015
Citation Information: J Clin Invest. 2015;125(9):3356-3364. https://doi.org/10.1172/JCI80005.
View: Text | PDF
Review Series

Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected

  • Text
  • PDF
Abstract

Our understanding of the role of myeloid-derived suppressor cells (MDSCs) in cancer is becoming increasingly complex. In addition to their eponymous role in suppressing immune responses, they directly support tumor growth, differentiation, and metastasis in a number of ways that are only now beginning to be appreciated. It is because of this increasingly complex role that these cells may become an important factor in the treatment of human cancer. In this Review, we discuss the most pertinent and controversial issues of MDSC biology and their role in promoting cancer progression and highlight how these cells may be used in the clinic, both as prognostic factors and as therapeutic targets.

Authors

Douglas Marvel, Dmitry I. Gabrilovich

×

Figure 1

MDSC ontogeny.

Options: View larger image (or click on image) Download as PowerPoint
MDSC ontogeny.
Differentiation of neutrophils and mononuclear cells in n...
Differentiation of neutrophils and mononuclear cells in naive mice is shown by black arrows. Hematopoietic stem cells (HSC) differentiate into common myeloid progenitors (CMP), then into granulocyte-macrophage progenitors (GMP), which give rise to mature neutrophils via sequential steps of differentiation involving myeloblasts, promyelocytes, myelocytes, metamyelocytes, and band forms. Differentiation of macrophages and DCs involves macrophage/DC progenitors (MDP), DC progenitors (CDP), and pre-cDCs as well as several types of monocytes. The most prominent are Ly6C+ inflammatory monocytes and Ly6C– patrolling monocytes. Differentiation of myeloid cells in tumor-bearing mice is shown by red arrows. Tumor-derived signals affect all steps of granulocytic and monocytic cell differentiation, causing expansion of pathologically activated PMN-MDSCs and Ly6C+ M-MDSCs. During tumorigenesis, these cells become more prevalent in bone marrow and spleen than in their nonsuppressive counterparts. M-MDSCs acquire the ability to differentiate to PMN-MDSCs and, at the tumor site, differentiate to TAMs and DCs. The dashed line represents pathways that are not yet firmly established.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts