Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1471-1484. https://doi.org/10.1172/JCI79329.
View: Text | PDF
Research Article Hematology

Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles

  • Text
  • PDF
Abstract

Extracellular ATP is a signal of tissue damage and induces macrophage responses that amplify inflammation and coagulation. Here we demonstrate that ATP signaling through macrophage P2X7 receptors uncouples the thioredoxin (TRX)/TRX reductase (TRXR) system and activates the inflammasome through endosome-generated ROS. TRXR and inflammasome activity promoted filopodia formation, cellular release of reduced TRX, and generation of extracellular thiol pathway–dependent, procoagulant microparticles (MPs). Additionally, inflammasome-induced activation of an intracellular caspase-1/calpain cysteine protease cascade degraded filamin, thereby severing bonds between the cytoskeleton and tissue factor (TF), the cell surface receptor responsible for coagulation activation. This cascade enabled TF trafficking from rafts to filopodia and ultimately onto phosphatidylserine-positive, highly procoagulant MPs. Furthermore, caspase-1 specifically facilitated cell surface actin exposure, which was required for the final release of highly procoagulant MPs from filopodia. Together, the results of this study delineate a thromboinflammatory pathway and suggest that components of this pathway have potential as pharmacological targets to simultaneously attenuate inflammation and innate immune cell–induced thrombosis.

Authors

Andrea S. Rothmeier, Patrizia Marchese, Brian G. Petrich, Christian Furlan-Freguia, Mark H. Ginsberg, Zaverio M. Ruggeri, Wolfram Ruf

×

Figure 7

P2RX7 signaling–activated cysteine proteases regulate TF trafficking.

Options: View larger image (or click on image) Download as PowerPoint
P2RX7 signaling–activated cysteine proteases regulate TF trafficking.
(A...
(A) Effects of inhibitors of TRXR (DNCB), caspase-1 (YVAD), calpain (ALLN), or lipid rafts (filipin) on ATP-induced degradation of filamin and calpastatin detected by Western blotting. Detection of cellular γ-actin served as loading control. (B) Effects of ALLN on TF localization in control and following ATP stimulation of WT (TFWT) or TF cytoplasmic domain–deleted (TFΔCT) macrophages. Cell surface TF was labeled with immunopurified rabbit anti–mouse TF antibody before the MP release reaction. Fixed cells were counterstained with Alexa 488–conjugated anti-rabbit IgG (green), phalloidin–Alexa 546 (red), and Hoechst (blue); scale bar: 10 μm. (C) Quantification of TF localized on filopodia; mean ± SD, n ≥ 12, ***P < 0.001, t test. TF-specific activity on MPs from ATP-stimulated TFWT and TFΔCT macrophages in the absence or presence of ALLN was determined based on normalization of MP-released TF quantified by Western blotting; mean ± SD, n = 3, **P < 0.01, t test. (D) Western blot analysis of a time course of ATP-induced filamin and calpastatin degradation in control and in caspase-1 inhibitor–treated cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts