Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Inhibition of ER stress–associated IRE-1/XBP-1 pathway reduces leukemic cell survival
Chih-Hang Anthony Tang, … , Juan R. Del Valle, Chih-Chi Andrew Hu
Chih-Hang Anthony Tang, … , Juan R. Del Valle, Chih-Chi Andrew Hu
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2585-2598. https://doi.org/10.1172/JCI73448.
View: Text | PDF
Research Article Oncology

Inhibition of ER stress–associated IRE-1/XBP-1 pathway reduces leukemic cell survival

  • Text
  • PDF
Abstract

Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress–associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor–bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma.

Authors

Chih-Hang Anthony Tang, Sujeewa Ranatunga, Crystina L. Kriss, Christopher L. Cubitt, Jianguo Tao, Javier A. Pinilla-Ibarz, Juan R. Del Valle, Chih-Chi Andrew Hu

×

Figure 7

B-I09 suppresses leukemic growth and is well tolerated in mice.

Options: View larger image (or click on image) Download as PowerPoint
B-I09 suppresses leukemic growth and is well tolerated in mice.
(A) Phar...
(A) Pharmacokinetic analysis of B-I09 is described in Methods (n = 3; mean ± SEM). The terminal half-life (T1/2), time of peak concentration (Tmax), maximum concentration (Cmax), and AUC versus time calculated using zero to infinity (AUCinf) of B-I09 in mouse plasma are indicated. (B) CLL-bearing Eμ-TCL1 mice were intraperitoneally injected with DMSO (n = 3) or B-I09 (50 mg/kg in DMSO, n = 8) daily for the first 5 days of each of 3 weeks. Blood was collected to measure lymphocyte numbers using a HemaTrue Hematology Analyzer (HESKA). Data were compared with lymphocyte counts prior to B-I09 injections and plotted as mean ± SEM. (C) Lymphocyte counts in the peripheral blood of B-I09–treated Eμ-TCL1 mice (n = 8) were plotted as mean ± SEM. (D) PBMCs from B-I09 mice, before and after injections, were lysed for analysis of indicated proteins. (E) Splenocytes from DMSO- or B-I09–injected Eμ-TCL1 mice were stained with IgM-PE-Cy7, B220-FITC, CD5-APC, annexin V–PE, and 7-AAD. Gated IgM+B220+CD5+ splenic CLL cells were analyzed for annexin V– and/or 7-AAD–positive populations. (F) Percentages of apoptotic cells in gated IgM+B220+CD5+ CLL populations from spleens of DMSO-injected (n = 3) or B-I09–injected (n = 8) Eμ-TCL1 mice were plotted as mean ± SEM. (G) Weight of DMSO-injected (n = 3) or B-I09–injected (n = 8) Eμ-TCL1 mice was plotted as mean ± SD. (H) Paraffin-embedded sections of indicated organs from Eμ-TCL1 mice receiving 3 weeks of injections with DMSO or B-I09 were stained with H&E. Scale bars: 80 μm.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts