Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions
Jinhong Wu, … , Hongbo Chi, Xiao-Ping Zhong
Jinhong Wu, … , Hongbo Chi, Xiao-Ping Zhong
Published March 10, 2014
Citation Information: J Clin Invest. 2014;124(4):1685-1698. https://doi.org/10.1172/JCI69780.
View: Text | PDF | Corrigendum | Expression of Concern
Research Article

iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

  • Text
  • PDF
Abstract

Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells.

Authors

Jinhong Wu, Jialong Yang, Kai Yang, Hongxia Wang, Balachandra Gorentla, Jinwook Shin, Yurong Qiu, Loretta G. Que, W. Michael Foster, Zhenwei Xia, Hongbo Chi, Xiao-Ping Zhong

×

Figure 1

Critical role of TSC1 for iNKT cell terminal differentiation.

Options: View larger image (or click on image) Download as PowerPoint
Critical role of TSC1 for iNKT cell terminal differentiation.
(A) Expres...
(A) Expression of Tsc1 and Tsc2 in iNKT cells and cαβT cells. mRNAs of indicated molecules from MACS- and FACS-sorted thymic CD1dTet+TCRβ+iNKT and CD1dTet–TCRβ+CD4 and CD8 T cells from WT mice were determined by real-time qPCR. Data shown (mean ± SEM) present values from triplicates and represent 2 experiments. (B) CD1dTet and TCRβ staining of WT and TSC1KO thymocytes (Thy), splenocytes (Spl), and liver MNCs (Liv). Representative dot plots of live-gated cells are shown. (C) Percentages and absolute numbers of CD1dTet+TCRβ+iNKT cells in WT and TSC1KO thymi, spleens, and livers (n = 5). (D) NK1.1 and CD44 staining on gated iNKT cells from B. (E) Percentages and absolute numbers of stage 1 to 3 iNKT cells from WT and KO mice (n = 5). (F) iNKT cell subsets based on CD4 and CD8 staining (n = 6). CD4SP, SP CD4 cells. (G) iNKT cell proliferation in vivo determined by BrdU staining. BrdU+ stage 1 to 3 iNKT cells from WT and TSC1KO thymi after 24-hour BrdU injection are shown (mean ± SEM) (n = 3). (H) Death rates of WT and TSC1KO stage 2 and 3 iNKT cells. *P < 0.05; **P < 0.01; ***P < 0.001, Student’s t test. (B–G) Data shown are representative or calculated from at least 3 experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts