Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
β3-integrin–deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival
Kairbaan M. Hodivala-Dilke, … , Steven Teitelbaum, Richard O. Hynes
Kairbaan M. Hodivala-Dilke, … , Steven Teitelbaum, Richard O. Hynes
Published January 15, 1999
Citation Information: J Clin Invest. 1999;103(2):229-238. https://doi.org/10.1172/JCI5487.
View: Text | PDF
Article

β3-integrin–deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival

  • Text
  • PDF
Abstract

β3 integrins have been implicated in a wide variety of functions, including platelet aggregation and thrombosis (αIIbβ3) and implantation, placentation, angiogenesis, bone remodeling, and tumor progression (αvβ3). The human bleeding disorder Glanzmann thrombasthenia (GT) can result from defects in the genes for either the αIIb or the β3 subunit. In order to develop a mouse model of this disease and to further studies of hemostasis, thrombosis, and other suggested roles of β3 integrins, we have generated a strain of β3-null mice. The mice are viable and fertile, and show all the cardinal features of GT (defects in platelet aggregation and clot retraction, prolonged bleeding times, and cutaneous and gastrointestinal bleeding). Implantation appears to be unaffected, but placental defects do occur and lead to fetal mortality. Postnatal hemorrhage leads to anemia and reduced survival. These mice will allow analyses of the other suggested functions of β3 integrins and we report that postnatal neovascularization of the retina appears to be β3-integrin–independent, contrary to expectations from inhibition experiments.

Authors

Kairbaan M. Hodivala-Dilke, Kevin P. McHugh, Dimitrios A. Tsakiris, Helen Rayburn, Denise Crowley, Mollie Ullman-Culleré, F. Patrick Ross, Barry S. Coller, Steven Teitelbaum, Richard O. Hynes

×

Full Text PDF | Download (938.98 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts