Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Depletion of CD4+ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques
Alexandra M. Ortiz, … , Cynthia A. Derdeyn, Guido Silvestri
Alexandra M. Ortiz, … , Cynthia A. Derdeyn, Guido Silvestri
Published October 17, 2011
Citation Information: J Clin Invest. 2011;121(11):4433-4445. https://doi.org/10.1172/JCI46023.
View: Text | PDF
Research Article AIDS/HIV

Depletion of CD4+ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques

  • Text
  • PDF
Abstract

CD4+ T cells play a central role in the immunopathogenesis of HIV/AIDS, and their depletion during chronic HIV infection is a hallmark of disease progression. However, the relative contribution of CD4+ T cells as mediators of antiviral immune responses and targets for virus replication is still unclear. Here, we have generated data in SIV-infected rhesus macaques (RMs) that suggest that CD4+ T cells are essential in establishing control of virus replication during acute infection. To directly assess the role of CD4+ T cells during primary SIV infection, we in vivo depleted these cells from RMs prior to infecting the primates with a pathogenic strain of SIV. Compared with undepleted animals, CD4+ lymphocyte–depleted RMs showed a similar peak of viremia, but did not manifest any post-peak decline of virus replication despite CD8+ T cell– and B cell–mediated SIV-specific immune responses comparable to those observed in control animals. Interestingly, depleted animals displayed rapid disease progression, which was associated with increased virus replication in non-T cells as well as the emergence of CD4-independent SIV-envelopes. Our results suggest that the antiviral CD4+ T cell response may play an important role in limiting SIV replication, which has implications for the design of HIV vaccines.

Authors

Alexandra M. Ortiz, Nichole R. Klatt, Bing Li, Yanjie Yi, Brian Tabb, Xing Pei Hao, Lawrence Sternberg, Benton Lawson, Paul M. Carnathan, Elizabeth M. Cramer, Jessica C. Engram, Dawn M. Little, Elena Ryzhova, Francisco Gonzalez-Scarano, Mirko Paiardini, Aftab A. Ansari, Sarah Ratcliffe, James G. Else, Jason M. Brenchley, Ronald G. Collman, Jacob D. Estes, Cynthia A. Derdeyn, Guido Silvestri

×

Full Text PDF | Download (2.62 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts