Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21
Huabiao Chen, Chun Li, Jinghe Huang, Thai Cung, Katherine Seiss, Jill Beamon, Mary F. Carrington, Lindsay C. Porter, Patrick S. Burke, Yue Yang, Bethany J. Ryan, Ruiwu Liu, Robert H. Weiss, Florencia Pereyra, William D. Cress, Abraham L. Brass, Eric S. Rosenberg, Bruce D. Walker, Xu G. Yu, Mathias Lichterfeld
Huabiao Chen, Chun Li, Jinghe Huang, Thai Cung, Katherine Seiss, Jill Beamon, Mary F. Carrington, Lindsay C. Porter, Patrick S. Burke, Yue Yang, Bethany J. Ryan, Ruiwu Liu, Robert H. Weiss, Florencia Pereyra, William D. Cress, Abraham L. Brass, Eric S. Rosenberg, Bruce D. Walker, Xu G. Yu, Mathias Lichterfeld
View: Text | PDF
Research Article AIDS/HIV

CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21

  • Text
  • PDF
Abstract

Elite controllers represent a unique group of HIV-1–infected persons with undetectable HIV-1 replication in the absence of antiretroviral therapy. However, the mechanisms contributing to effective viral immune defense in these patients remain unclear. Here, we show that compared with HIV-1 progressors and HIV-1–negative persons, CD4+ T cells from elite controllers are less susceptible to HIV-1 infection. This partial resistance to HIV-1 infection involved less effective reverse transcription and mRNA transcription from proviral DNA and was associated with strong and selective upregulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). Experimental blockade of p21 in CD4+ T cells from elite controllers resulted in a marked increase of viral reverse transcripts and mRNA production and led to higher enzymatic activities of cyclin-dependent kinase 9 (CDK9), which serves as a transcriptional coactivator of HIV-1 gene expression. This suggests that p21 acts as a barrier against HIV-1 infection in CD4+ T cells from elite controllers by inhibiting a cyclin-dependent kinase required for effective HIV-1 replication. These data demonstrate a mechanism of host resistance to HIV-1 in elite controllers and may open novel perspectives for clinical strategies to prevent or treat HIV-1 infection.

Authors

Huabiao Chen, Chun Li, Jinghe Huang, Thai Cung, Katherine Seiss, Jill Beamon, Mary F. Carrington, Lindsay C. Porter, Patrick S. Burke, Yue Yang, Bethany J. Ryan, Ruiwu Liu, Robert H. Weiss, Florencia Pereyra, William D. Cress, Abraham L. Brass, Eric S. Rosenberg, Bruce D. Walker, Xu G. Yu, Mathias Lichterfeld

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,079 56
PDF 120 10
Figure 361 7
Supplemental data 62 2
Citation downloads 110 0
Totals 1,732 75
Total Views 1,807
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts