Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CCR1 and CCR5 promote hepatic fibrosis in mice
Ekihiro Seki, Samuele De Minicis, Geum-Youn Gwak, Johannes Kluwe, Sayaka Inokuchi, Christina A. Bursill, Josep M. Llovet, David A. Brenner, Robert F. Schwabe
Ekihiro Seki, Samuele De Minicis, Geum-Youn Gwak, Johannes Kluwe, Sayaka Inokuchi, Christina A. Bursill, Josep M. Llovet, David A. Brenner, Robert F. Schwabe
View: Text | PDF
Research Article Hepatology

CCR1 and CCR5 promote hepatic fibrosis in mice

  • Text
  • PDF
Abstract

Hepatic fibrosis develops as a response to chronic liver injury and almost exclusively occurs in a proinflammatory environment. However, the role of inflammatory mediators in fibrogenic responses of the liver is only poorly understood. We therefore investigated the role of CC chemokines and their receptors in hepatic fibrogenesis. The CC chemokines MIP-1α, MIP-1β, and RANTES and their receptors CCR1 and CCR5 were strongly upregulated in 2 experimental mouse models of fibrogenesis. Neutralization of CC chemokines by the broad-spectrum CC chemokine inhibitor 35k efficiently reduced hepatic fibrosis, and CCR1- and CCR5-deficient mice displayed substantially reduced hepatic fibrosis and macrophage infiltration. Analysis of fibrogenesis in CCR1- and CCR5-chimeric mice revealed that CCR1 mediates its profibrogenic effects in BM-derived cells, whereas CCR5 mediates its profibrogenic effects in resident liver cells. CCR5 promoted hepatic stellate cell (HSC) migration through a redox-sensitive, PI3K-dependent pathway. Both CCR5-deficient HSCs and CCR1- and CCR5-deficient Kupffer cells displayed strong suppression of CC chemokine–induced migration. Finally, we detected marked upregulation of RANTES, CCR1, and CCR5 in patients with hepatic cirrhosis, confirming activation of the CC chemokine system in human fibrogenesis. Our data therefore support a role for the CC chemokine system in hepatic fibrogenesis and suggest distinct roles for CCR1 and CCR5 in Kupffer cells and HSCs.

Authors

Ekihiro Seki, Samuele De Minicis, Geum-Youn Gwak, Johannes Kluwe, Sayaka Inokuchi, Christina A. Bursill, Josep M. Llovet, David A. Brenner, Robert F. Schwabe

×

Figure 6

CCR1 and CCR5 promote biliary fibrosis through different cell populations.

Options: View larger image (or click on image) Download as PowerPoint
CCR1 and CCR5 promote biliary fibrosis through different cell population...
BMT was performed to generate wild-type mice with wild-type BM, wild-type mice with Ccr1–/– or Ccr5–/– BM, Ccr1–/– mice with wild-type or Ccr1–/– BM, and Ccr5–/– mice with wild-type or Ccr5–/– BM. (A) Successful BMT was tested by comparing splenic levels of Ccr1 and Ccr5 mRNA, which are expressed as fold change compared with wild-type mice transplanted with wild-type BM. ND, not detectable. (B–G) Mice underwent 3-week BDL 3 months after BMT. Hepatic fibrosis was evaluated by Sirius red staining (B and E; original magnification, ×100), quantification of the Sirius red–positive area (C and F), and hepatic hydroxyproline quantification (D and G). *P < 0.05, **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts