Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice
John D. Belcher, Hemachandra Mahaseth, Thomas E. Welch, Leo E. Otterbein, Robert P. Hebbel,, Gregory M. Vercellotti
John D. Belcher, Hemachandra Mahaseth, Thomas E. Welch, Leo E. Otterbein, Robert P. Hebbel,, Gregory M. Vercellotti
View: Text | PDF
Research Article Hematology

Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice

  • Text
  • PDF
Abstract

Transgenic sickle mice expressing βS hemoglobin have activated vascular endothelium that exhibits enhanced expression of NF-κB and adhesion molecules that promote vascular stasis in sickle, but not in normal, mice in response to hypoxia/reoxygenation. Sickle mice hemolyze rbcs in vivo as demonstrated by increased reticulocyte counts, plasma hemoglobin and bilirubin, and reduced plasma haptoglobin. The heme content is elevated in sickle organs, which promotes vascular inflammation and heme oxygenase-1 expression. Treatment of sickle mice with hemin further increases heme oxygenase-1 expression and inhibits hypoxia/reoxygenation–induced stasis, leukocyte-endothelium interactions, and NF-κB, VCAM-1, and ICAM-1 expression. Heme oxygenase inhibition by tin protoporphyrin exacerbates stasis in sickle mice. Furthermore, treatment of sickle mice with the heme oxygenase enzymatic product carbon monoxide or biliverdin inhibits stasis and NF-κB, VCAM-1, and ICAM-1 expression. Local administration of heme oxygenase-1 adenovirus to subcutaneous skin increases heme oxygenase-1 and inhibits hypoxia/reoxygenation–induced stasis in the skin of sickle mice. Heme oxygenase-1 plays a vital role in the inhibition of vaso-occlusion in transgenic sickle mice.

Authors

John D. Belcher, Hemachandra Mahaseth, Thomas E. Welch, Leo E. Otterbein, Robert P. Hebbel,, Gregory M. Vercellotti

×

Figure 8

HO-1-ADV increases HO-1 expression and inhibits stasis.

Options: View larger image (or click on image) Download as PowerPoint
HO-1-ADV increases HO-1 expression and inhibits stasis.
Local administra...
Local administration of HO-1-ADV increases HO-1 expression (A) and inhibits hypoxia/reoxygenation–induced stasis (B) in the skin. S+S-Antilles sickle mice with an implanted DSFC were treated with either a rat HO-1-ADV construct (n = 3 mice and 84 venules) or an empty Control-ADV construct (n = 4 mice and 64 venules). The adenovirus constructs (2 × 107 MOI) in sterile saline were dripped onto the subcutaneous skin inside the DSFC. Forty-eight hours after adenovirus treatment, hypoxia/reoxygenation–induced stasis was measured (B). After measurement of stasis, the skin inside the DSFC window was harvested, and HO-1 expression was measured in the skin homogenates by Western blotting (A). Below each bar is a representative HO-1 band from the Western blot. *P < 0.05, Control-ADV versus HO-1-ADV.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts