Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Novel APC-like properties of human NK cells directly regulate T cell activation
Jacob Hanna, … , Jane H. Buckner, Ofer Mandelboim
Jacob Hanna, … , Jane H. Buckner, Ofer Mandelboim
Published December 1, 2004
Citation Information: J Clin Invest. 2004;114(11):1612-1623. https://doi.org/10.1172/JCI22787.
View: Text | PDF | Retraction
Article Immunology

Novel APC-like properties of human NK cells directly regulate T cell activation

  • Text
  • PDF
Abstract

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane–enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell–mediated cytotoxicity and specific ligand recognition by cell surface–activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell–activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell–activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.

Authors

Jacob Hanna, Tsufit Gonen-Gross, Jonathan Fitchett, Tony Rowe, Mark Daniels, Tal I. Arnon, Roi Gazit, Aviva Joseph, Karoline W. Schjetne, Alexander Steinle, Angel Porgador, Dror Mevorach, Debra Goldman-Wohl, Simcha Yagel, Michael J. LaBarre, Jane H. Buckner, Ofer Mandelboim

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
One-dimensional gel separation of NK membrane protein fractions. One hun...
One-dimensional gel separation of NK membrane protein fractions. One hundred micrograms of UaNK and ANK cell membrane_enriched fractions were separated on 4_20% Tris-Glycine gel. Twenty equally spaced sections between 250 and 6 kDa were excised from each fraction and were subsequently used for proteomic analysis.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts