Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Role of interleukin 10 in specific immunotherapy.
C A Akdis, … , B Wüthrich, K Blaser
C A Akdis, … , B Wüthrich, K Blaser
Published July 1, 1998
Citation Information: J Clin Invest. 1998;102(1):98-106. https://doi.org/10.1172/JCI2250.
View: Text | PDF
Research Article

Role of interleukin 10 in specific immunotherapy.

  • Text
  • PDF
Abstract

The induction of allergen-specific anergy in peripheral T cells represents a key step in specific immunotherapy (SIT). Here we demonstrate that the anergic state results from increased IL-10 production. In bee venom (BV)-SIT the specific proliferative and cytokine responses against the main allergen, the phospholipase A2 (PLA), and T cell epitope-containing PLA peptides were significantly suppressed after 7 d of treatment. Simultaneously, the production of IL-10 increased during BV-SIT. After 28 d of BV-SIT the anergic state was established. Intracytoplasmic cytokine staining of PBMC combined with surface marker detection revealed that IL-10 was produced initially by activated CD4(+)CD25(+), allergen-specific T cells, and followed by B cells and monocytes. Neutralization of IL-10 in PBMC fully reconstituted the specific proliferative and cytokine responses. A similar state of IL-10-associated T cell anergy, as induced in BV-SIT, was found in hyperimmune individuals who recently had received multiple bee stings. The addition of IL-10 to soluble CD40 ligand IL-4-stimulated PBMC or purified B cells inhibited the PLA-specific and total IgE and enhanced the IgG4 formation. Accordingly, increased IL-10 production by SIT causes specific anergy in peripheral T cells, and regulates specific IgE and IgG4 production toward normal IgG4-related immunity.

Authors

C A Akdis, T Blesken, M Akdis, B Wüthrich, K Blaser

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts