Plasminogen activator inhibitor-1 (PAI-1), encoded by SERPINE1, contributes to age-related cardiovascular diseases (CVD) and other aging-related pathologies. Humans with a heterozygous loss-of-function SERPINE1 variant exhibit protection against aging and cardiometabolic dysfunction. We engineered a mouse model mimicking the human mutation (Serpine1TA700/+) and compared cardiovascular responses with wild-type littermates. Serpine1TA700/+ mice lived 20% longer than littermate controls. Under L-NG-Nitro-arginine methyl ester (L-NAME)-induced vascular stress, Serpine1TA700/+ mice exhibited diminished pulse wave velocity (PWV), lower systolic hypertension (SBP), and preserved left ventricular diastolic function compared to controls. Conversely, PAI-1-overexpressing mice exhibited measurements indicating accelerated cardiovascular aging. Single cell transcriptomics of Serpine1TA700/+ aortas revealed a vascular-protective mechanism with downregulation of extracellular matrix regulators Ccn1 and Itgb1. Serpine1TA700/+ aortas were also enriched in a cluster of smooth muscle cells that exhibited plasticity. Finally, PAI-1 pharmacological inhibition normalized SBP and reversed L-NAME-induced PWV elevation. These findings demonstrate that PAI-1 reduction protects against cardiovascular aging-related phenotypes, while PAI-1 excess promotes vascular pathological changes. Taken together, PAI-1 inhibition represents a promising strategy to mitigate age-related CVD.
Alireza Khoddam, Anthony Kalousdian, Mesut Eren, Saul Soberanes, Andrew Decker, Elizabeth J. Lux, Benjamin W. Zywicki, Brian Dinh, Bedirhan Boztepe, Baljash S. Cheema, Carla M. Cuda, Hiam Abdala-Valencia, Arun Sivakumar, Toshio Miyata, Lisa D. Wilsbacher, Douglas E. Vaughan