Neuromyelitis optica (NMO) is an autoimmune disorder characterized by autoantibodies against the astrocyte water channel aquaporin-4 (AQP4) that cause demyelination in the optic nerves and spinal cord. How astrocytopathy leads to myelination deficits remains unclear. Chitinase-3–like protein 1 (CHI3L1, also known as YKL-40) is predominantly secreted by activated astrocytes, serves as a robust NMO biomarker, and plays a role in immune responses, but how it is induced and shapes astrocyte activation in NMO is not well defined. Using ex vivo and in vivo NMO mouse models together with mice with astrocyte-specific CHI3L1 knockout, we demonstrated that CHI3L1 directly contributed to demyelinating lesions elicited by AQP4 autoantibody–activated astrocytes. With complementary in vitro assays and inducible transgenic lines, we uncovered an astrocyte-intrinsic cascade in which AQP4 autoantibody exposure activated STAT3, which in turn drove CHI3L1 expression and secretion. Secreted CHI3L1 then engaged the astrocytic receptor RAGE in an autocrine manner, activating downstream NF-κB signaling that drove proinflammatory gliosis and damaged myelination. Pharmacological blockade of this pathway in NMO models rescued demyelinating pathology and improved motor function. These findings reveal an astrocyte-intrinsic CHI3L1 pathway that contributed to demyelination in NMO and identify actionable therapeutic targets.
Huiming Xu, Wei Jiang, Li Xu, Haoyang Li, Xin Yang, Fan Zhu, Pengyan He, Yanna Song, Yuhan Li, Yu-Wen Alvin Huang, Wei Qiu, Changyong Tang
CHI3L1 amplifies demyelination and inflammation in NMO models driven by human AQP4 autoantibodies.