Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model
Louise S. Villadsen, … , Ole Baadsgaard, Jan G.J. van de Winkel
Louise S. Villadsen, … , Ole Baadsgaard, Jan G.J. van de Winkel
Published November 15, 2003
Citation Information: J Clin Invest. 2003;112(10):1571-1580. https://doi.org/10.1172/JCI18986.
View: Text | PDF
Article Autoimmunity

Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model

  • Text
  • PDF
Abstract

Psoriasis is a chronic inflammatory disease of the skin characterized by epidermal hyperplasia, dermal angiogenesis, infiltration of activated T cells, and increased cytokine levels. One of these cytokines, IL-15, triggers inflammatory cell recruitment, angiogenesis, and production of other inflammatory cytokines, including IFN-γ, TNF-α, and IL-17, which are all upregulated in psoriatic lesions. To investigate the role of IL-15 in psoriasis, we generated mAb’s using human immunoglobulin-transgenic mice. One of the IL-15–specific antibodies we generated, 146B7, did not compete with IL-15 for binding to its receptor but potently interfered with the assembly of the IL-15 receptor α, β, γ complex. This antibody effectively blocked IL-15–induced T cell proliferation and monocyte TNF-α release in vitro. In a human psoriasis xenograft model, antibody 146B7 reduced the severity of psoriasis, as measured by epidermal thickness, grade of parakeratosis, and numbers of inflammatory cells and cycling keratinocytes. These results obtained with this IL-15–specific mAb support an important role for IL-15 in the pathogenesis of psoriasis.

Authors

Louise S. Villadsen, Janine Schuurman, Frank Beurskens, Tomas N. Dam, Frederik Dagnæs-Hansen, Lone Skov, Jørgen Rygaard, Marleen M. Voorhorst-Ogink, Arnout F. Gerritsen, Marc A. van Dijk, Paul W.H.I. Parren, Ole Baadsgaard, Jan G.J. van de Winkel

×

Full Text PDF | Download (1.75 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts