Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Quantitative functional profiling of ERCC2 mutations deciphers cisplatin sensitivity in bladder cancer
Judit Börcsök, … , Zoltan Szallasi, Claus S. Sørensen
Judit Börcsök, … , Zoltan Szallasi, Claus S. Sørensen
Published August 15, 2025
Citation Information: J Clin Invest. 2025;135(16):e186688. https://doi.org/10.1172/JCI186688.
View: Text | PDF
Research Article Cell biology Genetics Oncology

Quantitative functional profiling of ERCC2 mutations deciphers cisplatin sensitivity in bladder cancer

  • Text
  • PDF
Abstract

Tumor gene alterations can serve as predictive biomarkers for therapy response. The nucleotide excision repair (NER) helicase ERCC2 carries heterozygous missense mutations in approximately 10% of bladder tumors, and these may predict sensitivity to cisplatin treatment. To explore the clinical actionability of ERCC2 mutations, we assembled a multinational cohort of 2,012 individuals with bladder cancer and applied the highly quantitative CRISPR-Select assay to functionally profile recurrent ERCC2 mutations. We also developed a single-allele editing version of CRISPR-Select to assess heterozygous missense variants in their native context. From the cohort, 506 ERCC2 mutations were identified, with 93% being heterozygous missense variants. CRISPR-Select pinpointed deleterious, cisplatin-sensitizing mutations, particularly within the conserved helicase domains. Importantly, single-allele editing revealed that heterozygous helicase-domain mutations markedly increased cisplatin sensitivity. Integration with clinical data confirmed that these mutations were associated with improved response to platinum-based neoadjuvant chemotherapy. Comparison with computational algorithms showed substantial discrepancies, highlighting the importance of precision functional assays for interpreting mutation effects in clinically relevant contexts. Our results demonstrate that CRISPR-Select provides a robust platform to advance biomarker-driven therapy in bladder cancer and supports its potential integration into precision oncology workflows.

Authors

Judit Börcsök, Diyavarshini Gopaul, Daphne Devesa-Serrano, Clémence Mooser, Nicolas Jonsson, Matteo Cagiada, Dag R. Stormoen, Maya N. Ataya, Brendan J. Guercio, Hristos Z. Kaimakliotis, Gopa Iyer, Kresten Lindorff-Larsen, Lars Dyrskjøt, Kent W. Mouw, Zoltan Szallasi, Claus S. Sørensen

×

Full Text PDF

Download PDF (7.60 MB) | Download high-resolution PDF (20.92 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts