Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. Although the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNF-α alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNF-α impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNF-α–driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNF-α downregulates syntaxin 17 (STX17), a key mediator of autophagosome-lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNF-α disrupts hemostasis through autophagy inhibition, highlighting TNF-α as a critical regulator of platelet metabolism and function. This study provides potentially new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.
Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C. Petrey, Gabriela Dveksler, Gerardo P. Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P. Wartchow, Ken Jones, Lucas H. Ting, Catherine Jankowski, Marguerite R. Kelher, Marilyn Manco-Johnson, Marie L. Feser, Kevin D. Deane, Travis Nemkov, Angelo D’Alessandro, Andrew Thorburn, Paola Maycotte, José A. López, Pavel Davizon-Castillo