Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Version history
  • Article usage
  • Citations to this article

Advertisement

CorrigendumImmunology Free access | 10.1172/JCI18264C1

Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)

Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jérôme Feldmann, Ilhan Tezcan, Fügen Ersoy, Anne Houdusse, Alain Fischer, and Geneviève de Saint Basile

Find articles by Ménasché, G. in: JCI | PubMed | Google Scholar

Find articles by Hsuan Ho, C. in: JCI | PubMed | Google Scholar

Find articles by Sanal, O. in: JCI | PubMed | Google Scholar

Find articles by Feldmann, J. in: JCI | PubMed | Google Scholar

Find articles by Tezcan, I. in: JCI | PubMed | Google Scholar

Find articles by Ersoy, F. in: JCI | PubMed | Google Scholar

Find articles by Houdusse, A. in: JCI | PubMed | Google Scholar

Find articles by Fischer, A. in: JCI | PubMed | Google Scholar

Find articles by de Saint Basile, G. in: JCI | PubMed | Google Scholar

Published April 1, 2005 - More info

Published in Volume 115, Issue 4 on April 1, 2005
J Clin Invest. 2005;115(4):1100–1100. https://doi.org/10.1172/JCI18264C1.
© 2005 The American Society for Clinical Investigation
Published April 1, 2005 - Version history
View PDF

Related article:

Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)
Gaël Ménasché, … , Alain Fischer, Geneviève de Saint Basile
Gaël Ménasché, … , Alain Fischer, Geneviève de Saint Basile
Article Immunology

Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)

  • Text
  • PDF
Abstract

Griscelli syndrome (GS) is a rare autosomal recessive disorder that associates hypopigmentation, characterized by a silver-gray sheen of the hair and the presence of large clusters of pigment in the hair shaft, and the occurrence of either a primary neurological impairment or a severe immune disorder. Two different genetic forms, GS1 and GS2, respectively, account for the mutually exclusive neurological and immunological phenotypes. Mutations in the gene encoding the molecular motor protein Myosin Va (MyoVa) cause GS1 and the dilute mutant in mice, whereas mutations in the gene encoding the small GTPase Rab27a are responsible for GS2 and the ashen mouse model. We herein present genetic and functional evidence that a third form of GS (GS3), whose expression is restricted to the characteristic hypopigmentation of GS, results from mutation in the gene that encodes melanophilin (Mlph), the ortholog of the gene mutated in leaden mice. We also show that an identical phenotype can result from the deletion of the MYO5A F-exon, an exon with a tissue-restricted expression pattern. This spectrum of GS conditions pinpoints the distinct molecular pathways used by melanocytes, neurons, and immune cells in secretory granule exocytosis, which in part remain to be unraveled.

Authors

Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jérôme Feldmann, Ilhan Tezcan, Fügen Ersoy, Anne Houdusse, Alain Fischer, Geneviève de Saint Basile

×

Original citation: J. Clin. Invest.112:450–456(2003). doi:10.1172/JCI18264

Citation for this corrigendum: J. Clin. Invest.115:1100 (2005). doi:10.1172/JCI18264C1

During preparation of this manuscript for publication, an error was introduced into the first sentence of Methods regarding numbering of the 2 patients. The sentence should read:

The clinical presentation of patients A and B (PA and PB) has been previously reported (P13 and P12, respectively, in ref. 18).

The authors regret the error.

Version history
  • Version 1 (April 1, 2005): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts