Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Selective inhibition of long isoforms of phosphodiesterase 4D mitigates liver fibrosis in mouse models
Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung
Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung
View: Text | PDF
Research In-Press Preview Hepatology Inflammation

Selective inhibition of long isoforms of phosphodiesterase 4D mitigates liver fibrosis in mouse models

  • Text
  • PDF
Abstract

Chronic inflammation leads to tissue fibrosis which can disrupt the function of the parenchyma of the organ and ultimately lead to organ failure. The most prevalent form of this occurs in chronic hepatitis which leads to liver fibrosis and, ultimately, cirrhosis and hepatic failure. Although there is no specific treatment for fibrosis, the phosphodiesterase 4 (PDE4) competitive inhibitors have been shown to ameliorate fibrosis in rodent models. However, competitive inhibitors of PDE4 have shown significantly reduced effectiveness due to severe gastrointestinal side effects. The PDE4 family is composed of four genes (PDE4A–D) with each having up to 9 differentially spliced isoforms. Here, we report that PDE4D expression is specifically elevated during the hepatic fibrosis stage of liver disease progression. Furthermore, the expression of the long isoforms of PDE4D is selectively elevated in activated hepatic stellate cells, leading to the enhanced accumulation of extracellular matrix components. In a mouse model of liver fibrosis, genetic ablation of PDE4D or pharmacological inhibition using D159687, a selective allosteric inhibitor targeting the long isoforms of PDE4D, suppresses the expression of inflammatory and profibrogenic genes. These findings establish the long isoforms of PDE4D as key drivers of liver fibrosis and highlight their potential as therapeutic targets to ameliorate liver fibrosis.

Authors

Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung

×

Usage data is cumulative from November 2025 through November 2025.

Usage JCI PMC
Text version 384 0
PDF 166 0
Supplemental data 29 0
Citation downloads 22 0
Totals 601 0
Total Views 601

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts