Erythropoietic protoporphyria (EPP) is a genetic disorder typically resulting from decreased ferrochelatase (FECH) activity, the last enzyme in heme biosynthesis. Patients with X-linked protoporphyria (XLPP) have an overlapping phenotype caused by increased activity of 5-aminolevulinic acid synthase 2 (ALAS2), the first enzyme in erythroid heme synthesis. In both cases, protoporphyrin IX (PPIX) accumulates in erythrocytes and secondarily in plasma and tissues. Patients develop acute phototoxicity reactions upon brief exposure to sunlight. Some also suffer from chronic liver disease, and a small fraction develop acute cholestatic liver failure. Therapeutic options are limited, and none, save hematopoietic stem cell transplantation, directly targets erythroid PPIX accumulation. Bitopertin is an investigational orally available small molecule inhibitor of the erythroid cell surface glycine transporter GLYT1. We establish the bitopertin PPIX inhibitory half-maximal effective concentration in a human erythroblast EPP model and confirm a marked reduction of PPIX in erythroblasts derived from EPP patients. We demonstrate that bitopertin also reduces erythrocyte and plasma PPIX accumulation in vivo in mouse models of both EPP and XLPP. Finally, the reduction in erythroid PPIX ameliorates liver disease in the EPP mouse model. Altogether, these data support the development of bitopertin to treat patients with EPP or XLPP.
Sarah Ducamp, Min Wu, Juan Putra, Dean R. Campagna, Yi Xiang, Vu Hong, Matthew M. Heeney, Amy K. Dickey, Rebecca K. Leaf, Mark D. Fleming, Brian MacDonald, Paul J. Schmidt
Usage data is cumulative from July 2025 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 420 | 0 |
94 | 0 | |
Supplemental data | 60 | 0 |
Citation downloads | 19 | 0 |
Totals | 593 | 0 |
Total Views | 593 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.