Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis
Johannes Dirks, Jonas Fischer, Julia Klaussner, Christine Hofmann, Annette Holl-Wieden, Viktoria Buck, Christian Klemann, Hermann J. Girschick, Ignazio Caruana, Florian Erhard, Henner Morbach
Johannes Dirks, Jonas Fischer, Julia Klaussner, Christine Hofmann, Annette Holl-Wieden, Viktoria Buck, Christian Klemann, Hermann J. Girschick, Ignazio Caruana, Florian Erhard, Henner Morbach
View: Text | PDF
Clinical Research and Public Health Autoimmunity Infectious disease

Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis

  • Text
  • PDF
Abstract

BACKGROUND Antibiotic-Refractory Lyme Arthritis (ARLA) involves a complex interplay of T cell responses targeting Borrelia burgdorferi antigens progressing toward autoantigens by epitope spreading. However, the precise molecular mechanisms driving the pathogenic T cell response in ARLA remain unclear. Our aim was to elucidate the molecular program of disease-specific Th cells.METHODS Using flow cytometry, high-throughput T cell receptor (TCR) sequencing, and scRNA-Seq of CD4+ Th cells isolated from the joints of patients with ARLA living in Europe, we aimed to infer antigen specificity through unbiased analysis of TCR repertoire patterns, identifying surrogate markers for disease-specific TCRs, and connecting TCR specificity to transcriptional patterns.RESULTS PD-1hiHLA-DR+CD4+ effector T cells were clonally expanded within the inflamed joints and persisted throughout disease course. Among these cells, we identified a distinct TCR-β motif restricted to HLA-DRB1*11 or *13 alleles. These alleles, being underrepresented in patients with ARLA living in North America, were unexpectedly prevalent in our European cohort. The identified TCR-β motif served as surrogate marker for a convergent TCR response specific to ARLA, distinguishing it from other rheumatic diseases. In the scRNA-Seq data set, the TCR-β motif particularly mapped to peripheral T helper (TPH) cells displaying signs of sustained proliferation, continuous TCR signaling, and expressing CXCL13 and IFN-γ.CONCLUSION By inferring disease-specific TCRs from synovial T cells we identified a convergent TCR response in the joints of patients with ARLA that continuously fueled the expansion of TPH cells expressing a pathogenic cytokine effector program. The identified TCRs will aid in uncovering the major antigen targets of the maladaptive immune response.FUNDING Supported by the German Research Foundation (DFG) MO 2160/4-1; the Federal Ministry of Education and Research (BMBF; Advanced Clinician Scientist-Program INTERACT; 01EO2108) embedded in the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg; the German Center for Infection Research (DZIF; Clinical Leave Program; TI07.001_007) and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg (Clinician Scientist Program, Z-2/CSP-30).

Authors

Johannes Dirks, Jonas Fischer, Julia Klaussner, Christine Hofmann, Annette Holl-Wieden, Viktoria Buck, Christian Klemann, Hermann J. Girschick, Ignazio Caruana, Florian Erhard, Henner Morbach

×

Figure 4

Surrogate markers for ARLA-associated TCRs are disease specific and HLA-DRB1 restricted.

Options: View larger image (or click on image) Download as PowerPoint
Surrogate markers for ARLA-associated TCRs are disease specific and HLA-...
(A) Network representation of TCR specificity groups enriched by GLIPH2 in SF PD-1hiCD4+ T cells from 12 patients with ARLA, 6 with JIA and 3 with RA. Only specificity groups containing sequences from multiple patients are included and only networks with at least 50 members are shown. Motifs are represented by small black circles and corresponding CDR3 sequences by colored circles. The circle sizes reflect the absolute abundances of unique CDR3 amino acid (aa) sequences across all patients. (B) Sequence plots showcasing the aa sequences in CDR1-3β, derived from sequences within the highlighted network on the left, are displayed. To generate these sequence plots, sequences were filtered for the most abundant length of each CDR. (C) Frequencies of indicated surrogate markers in TCR-β sequences of FACS-sorted SF PD-1hiHLA-DR+CD4+ cells from children with JIA (n = 6) and ARLA (n = 12) determined by bulk sequencing. Patients exhibiting Serine at position 13 (Ser13) of HLA-DRB1 on at least 1 allele are denoted by filled circles. Bars indicate mean ± SD. 1-way ANOVA and multiple comparisons (to ARLA +) corrected with Dunnetts formula; the Ser13– JIA group was excluded from the statistical analysis due to the small sample size of n = 2; NS: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts