Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis
Kelly S. Doran, … , George Y. Liu, Victor Nizet
Kelly S. Doran, … , George Y. Liu, Victor Nizet
Published September 1, 2003
Citation Information: J Clin Invest. 2003;112(5):736-744. https://doi.org/10.1172/JCI17335.
View: Text | PDF
Article Infectious disease

Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis

  • Text
  • PDF
Abstract

Meningitis occurs when blood-borne pathogens cross the blood-brain barrier (BBB) in a complex interplay between endothelial cells and microbial gene products. We sought to understand the initial response of the BBB to the human meningeal pathogen group B Streptococcus (GBS) and the organism’s major virulence factors, the exopolysaccharide capsule and the β-hemolysin/cytolysin toxin (β-h/c). Using oligonucleotide microarrays, we found that GBS infection of human brain microvascular endothelial cells (HBMEC) induced a highly specific and coordinate set of genes including IL-8, Groα, Groβ, IL-6, GM-CSF, myeloid cell leukemia sequence-1 (Mcl-1), and ICAM-1, which act to orchestrate neutrophil recruitment, activation, and enhanced survival. Most strikingly, infection with a GBS strain lacking β-h/c resulted in a marked reduction in expression of genes involved in the immune response, while the unencapsulated strain generally induced similar or greater expression levels for the same subset of genes. Cell-free bacterial supernatants containing β-h/c activity induced IL-8 release, identifying this toxin as a principal provocative factor for BBB activation. These findings were further substantiated in vitro and in vivo. Neutrophil migration across polar HBMEC monolayers was stimulated by GBS and its β-h/c through a process involving IL-8 and ICAM-1. In a murine model of hematogenous meningitis, mice infected with β-h/c mutants exhibited lower mortality and decreased brain bacterial counts compared with mice infected with the corresponding WT GBS strains.

Authors

Kelly S. Doran, George Y. Liu, Victor Nizet

×

Full Text PDF | Download (1.10 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts