Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes
Joan Sabadell-Basallote, Brenno Astiarraga, Carlos Castaño, Miriam Ejarque, Maria Repollés-de-Dalmau, Ivan Quesada, Jordi Blanco, Catalina Núñez-Roa, M-Mar Rodríguez-Peña, Laia Martínez, Dario F. De Jesus, Laura Marroquí, Ramon Bosch, Eduard Montanya, Francesc X. Sureda, Andrea Tura, Andrea Mari, Rohit N. Kulkarni, Joan Vendrell, Sonia Fernández-Veledo
Joan Sabadell-Basallote, Brenno Astiarraga, Carlos Castaño, Miriam Ejarque, Maria Repollés-de-Dalmau, Ivan Quesada, Jordi Blanco, Catalina Núñez-Roa, M-Mar Rodríguez-Peña, Laia Martínez, Dario F. De Jesus, Laura Marroquí, Ramon Bosch, Eduard Montanya, Francesc X. Sureda, Andrea Tura, Andrea Mari, Rohit N. Kulkarni, Joan Vendrell, Sonia Fernández-Veledo
View: Text | PDF
Research Article Endocrinology Metabolism

SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes

  • Text
  • PDF
Abstract

Pancreatic β cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here, we report that succinate receptor 1 (SUCNR1) is expressed in β cells and is upregulated in hyperglycemic states in mice and humans. We found that succinate acted as a hormone-like metabolite and stimulated insulin secretion via a SUCNR1-Gq-PKC–dependent mechanism in human β cells. Mice with β cell–specific Sucnr1 deficiency exhibited impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance showed an enhanced nutrition-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

Authors

Joan Sabadell-Basallote, Brenno Astiarraga, Carlos Castaño, Miriam Ejarque, Maria Repollés-de-Dalmau, Ivan Quesada, Jordi Blanco, Catalina Núñez-Roa, M-Mar Rodríguez-Peña, Laia Martínez, Dario F. De Jesus, Laura Marroquí, Ramon Bosch, Eduard Montanya, Francesc X. Sureda, Andrea Tura, Andrea Mari, Rohit N. Kulkarni, Joan Vendrell, Sonia Fernández-Veledo

×

Figure 1

SUCNR1 is expressed in islets and β cells.

Options: View larger image (or click on image) Download as PowerPoint
SUCNR1 is expressed in islets and β cells.
(A) Sucnr1 mRNA levels analyz...
(A) Sucnr1 mRNA levels analyzed in subcutaneous white adipose tissue (scWAT), visceral WAT tissue (vWAT), and liver, pancreas, and muscle tissue from male mice by quantitative PCR (n = 3–4). (B) Immunohistochemical (IHC) staining of SUCNR1 in male human and male mouse pancreas sections, and chromogranin A IHC staining or H&E staining. Scale bars: 50 μm. (C) Analysis of Sucnr1 mRNA expression in α and β cells isolated by FACS from male rat islets (n = 4). (D) In silico study of SUCNR1 gene expression regulation by genomic sequences and specific human adult islet transcriptional factors, and single-nucleotide polymorphisms (SNPs) associated with T2D localized within or surrounding the SUCNR1 locus. TFBS, transcription factor binding site. Data are presented as mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts