Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Recruitment of naive CD4+ T cells by the recombinant zoster vaccine correlates with persistent immunity
Kerry J. Laing, … , David M. Koelle, Adriana Weinberg
Kerry J. Laing, … , David M. Koelle, Adriana Weinberg
Published October 3, 2023
Citation Information: J Clin Invest. 2023;133(23):e172634. https://doi.org/10.1172/JCI172634.
View: Text | PDF
Research Article

Recruitment of naive CD4+ T cells by the recombinant zoster vaccine correlates with persistent immunity

  • Text
  • PDF
Abstract

Herpes zoster (HZ) is a substantial problem for people with decreased cell-mediated immunity, including older adults. The first vaccine approved for HZ prevention, the zoster vaccine live (ZVL), which provided limited and short-lived protection, has been supplanted by the superior recombinant zoster vaccine (RZV), which provides robust and durable protection. To understand the mechanisms underlying the differential immunologic characteristics of the 2 vaccines, we used T cell receptor β chain sequencing and peptide–MHC class II tetramer staining to analyze recombinant glycoprotein E–specific (gE-specific) CD4+ T cell clonotypes in RZV and ZVL recipients. Compared with ZVL, RZV expanded more gE-specific CD4+ clonotypes, with greater breadth and higher frequency of public clonotypes. RZV recruited a higher proportion of clonotypes from naive than from memory cells, while ZVL recruited equally from memory and naive compartments. Compared with memory-derived, naive-derived clonotypes were more likely to last 5 or more years after immunization. Moreover, the frequency of tetramer+ persistent clones correlated with the frequency of tetramer+ naive CD4+ prevaccination T cells. We conclude that the ability of RZV to recruit naive CD4+ T cells into the response may contribute to the durability of its effect. The abundance, breadth, and frequency of public clonotypes may further add to its protective effect.

Authors

Kerry J. Laing, Emily S. Ford, Michael J. Johnson, Myron J. Levin, David M. Koelle, Adriana Weinberg

×

Full Text PDF

Download PDF (2.38 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts