Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim
Chun-Rong Chen, … , Basil Rapoport, Sandra M. McLachlan
Chun-Rong Chen, … , Basil Rapoport, Sandra M. McLachlan
Published June 15, 2003
Citation Information: J Clin Invest. 2003;111(12):1897-1904. https://doi.org/10.1172/JCI17069.
View: Text | PDF
Article Autoimmunity

The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim

  • Text
  • PDF
Abstract

Graves disease, a common organ-specific autoimmune disease affecting humans, differs from all other autoimmune diseases in being associated with target organ hyperfunction rather than organ damage. Clinical thyrotoxicosis is directly caused by autoantibodies that activate the thyrotropin receptor (TSHR). The etiology of Graves disease is multifactorial, with nongenetic factors playing an important role. Of the latter, there is the intriguing possibility that the molecular structure of the target antigen contributes to the development of thyroid-stimulatory autoantibodies (TSAb’s). Among the glycoprotein hormone receptors, only the TSHR undergoes intramolecular cleavage into disulfide-linked subunits with consequent shedding of some of the extracellular, autoantibody-binding A subunits. Functional autoantibodies do not arise to the noncleaving glycoprotein hormone receptors. Recently, TSAb’s were found to preferentially recognize shed, rather than attached, A subunits. Here we use a new adenovirus-mediated animal model of Graves disease to show that goiter and hyperthyroidism occur to a much greater extent when the adenovirus expresses the free A subunit as opposed to a genetically modified TSHR that cleaves minimally into subunits. These data show that shed A subunits induce or amplify the immune response leading to hyperthyroidism and provide new insight into the etiology of Graves disease.

Authors

Chun-Rong Chen, Pavel Pichurin, Yuji Nagayama, Francesco Latrofa, Basil Rapoport, Sandra M. McLachlan

×

Usage data is cumulative from February 2020 through February 2021.

Usage JCI PMC
Text version 288 216
PDF 53 222
Figure 68 0
Supplemental data 0 3
Citation downloads 12 0
Totals 421 441
Total Views 862
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts